The applicability of Tropical Rainfall Measuring Mission (TRMM3B42V7) precipitation data in the region was evaluated using the measured daily precipitation data in 16 hydrological stations in Shaanxi Province from 199...The applicability of Tropical Rainfall Measuring Mission (TRMM3B42V7) precipitation data in the region was evaluated using the measured daily precipitation data in 16 hydrological stations in Shaanxi Province from 1998 to 2014. The evaluation process with several statistical error metrics was applied to daily, monthly, and annual timescale. The results show that the satellite and gauge stations show good consistency for monthly and annual timescale, but rather worse accuracy of daily timescale. All timescales produced the overestimated result of average precipitation measurement. The spatially statistical distribution shows a slight correlation between the observation and satellite estimation, especially at the higher elevation area such as Taibai. The TRMM precipitation value is closer to the gauge station precipitation value at a place with lower elevation, whether the timescale is daily, monthly or annual. At the same time, the smaller timescale leads to closer relations between elevation and metrics. The research results are important value of the research study of meteorological process in the Qinba mountain area.展开更多
The purpose of this study is to advance our current understanding of soil moisture storage in subsurface and water infiltration rate in loess soil. Therefore, a set of experiments was conducted on two soil columns fil...The purpose of this study is to advance our current understanding of soil moisture storage in subsurface and water infiltration rate in loess soil. Therefore, a set of experiments was conducted on two soil columns filled with silty clay loam, with and without applying cavity technical method. For the soil column applied with loess cavity, the ponding infiltration was simulated using HYDRUS-2D/3D, version 2.x and the simulated results were verified by those of observation. The results show that 1) the loess cavity significantly decreased the infiltration rates when the flux permeated through it (varying from 0.358 to 0.208 cm·min-1) as compared with no cavity soil column (varying from 0.408 to 0.241 cm·min-1);2) similarly, the total cumulative infiltration and at the termination of wetting front advancement of soil column with cavity were 66 cm and 69 cm lower than that of no cavity soil column (76 and 78 cm), respectively. Consequently, the soil moisture at the subsurface and surrounding the loess cavity was effectively ameliorated;3) the model was capable of predicting water infiltration processes in the soil column with loess cavity, and the root mean square error of simulated water contents, wetting front advancements, cumulative infiltrations, and infiltration rates were from 0.22 to 3.63 cm3·cm-3, 1.6 to 3.63 cm, 3.44 cm, and 0.026 cm·min-1, respectively. Overall, the findings in this study indicate that loess cavity can effectively increase soil moisture storage at shallow surface and the HYDRUS-2D/3D model is capable of simulating and predicting scenarios to help achieve stable shallow soil surface with loess cavity.展开更多
The research on the characteristic frequency of precipitation is a great significance for guiding regional agricultural planning, water conservancy project designs, and drought and flood control. Droughts and floods o...The research on the characteristic frequency of precipitation is a great significance for guiding regional agricultural planning, water conservancy project designs, and drought and flood control. Droughts and floods occurred in northern Weihe Loess Plateau, affecting growing and yield of winter wheat in the area. Based on the daily precipitation data of 29 meteorological stations from 1981 to 2012, this study is to address the analysis of three different frequencies of annual precipitation at 5%, 50%, and 95%, and to determine the amount of rainfall excess and water shortage during seven growth stages of winter wheat at 5%, 10%, and 20% frequencies, respectively. Pearson type III curve was selected for this study to analyze the distribution frequency of annual rainfall and rainfall amount following seven growth stages of winter wheat crop in 29 stations of Northern Weihe loess plateau. As a result of our study, annual precipitation is gradually increasing from southwest to northeast of Northern Weihe loess plateau. The highest amount of annual precipitation occurred in the Baoji area and the lowest precipitation covered by the northwest area of Northern Weihe loess plateau. Moreover, the amount of rainfall of seven growth stages indicates that excessive rainfall occurs not only in the first stage (sowing to tillering) and seventh stage (flowering to ripening) but also in second stage (tillering to wintering). In the seventh stage, a large amount of excessive rainfall occurred in Changwu, Bin, Qianyang, Fengxiang, Baojiqu, and Baojixian. Moreover, water shortage is distributed in the third stage (from wintering to greening), the fourth stage (from greening to jointing), the fifth stage (from jointing to heading), and the sixth stage (from heading to flowering). Furthermore, the worst water shortages occurred in Hancheng, Heyang, Chengcheng, Pucheng, Dali, Tongchuan, and Fuping in the fourth stage (greening to jointing stage). Even though we study the crop water requirement under extreme rainfall conditions, the amount of rainwater still supply inadequate in some parts of the winter wheat growth stage. Therefore, this study provides main clues for the next step to study the irrigation water needs of winter wheat crops and to reduce agricultural risks in 29 counties in the northern loess plateau and other regions.展开更多
Application of fractal theory on the evolution of nonlinear study of the hydrological system, which found its internal rules from the complex hydrologic system, could make us more fully understand the hydrodynamic cha...Application of fractal theory on the evolution of nonlinear study of the hydrological system, which found its internal rules from the complex hydrologic system, could make us more fully understand the hydrodynamic characteristics of the complex motion of this system. Taking Weihe River as study area, this paper analyzes daily runoff series’ multi-fractal character and relative fluctuation feature by using the De-trended Fluctuation Analysis (DFA) method. Result shows that the daily runoff series of main channel and branches of Weihe river all shows multi-fractal characteristics clearly, and the turns of multi-fractal intensity of daily runoff series in Weihe river are: Xianyang station (1.388) > Yingge station (0.697) > Linjiacun station (0.665) > Zhangjiashan station (0.662) > Zhuangtou station (0.635). Rainfall, evaporation, water income and human activity and other factors affect the fluctuation character and multi-fractal intensity of daily runoff series through these factors’ superimposition and pining down mutually. This study could provide a theoretical supply for obtaining the quantitative indicators on multi-fractal characteristics about eco-environment situation of watershed, and for runoff forecasting.展开更多
文摘The applicability of Tropical Rainfall Measuring Mission (TRMM3B42V7) precipitation data in the region was evaluated using the measured daily precipitation data in 16 hydrological stations in Shaanxi Province from 1998 to 2014. The evaluation process with several statistical error metrics was applied to daily, monthly, and annual timescale. The results show that the satellite and gauge stations show good consistency for monthly and annual timescale, but rather worse accuracy of daily timescale. All timescales produced the overestimated result of average precipitation measurement. The spatially statistical distribution shows a slight correlation between the observation and satellite estimation, especially at the higher elevation area such as Taibai. The TRMM precipitation value is closer to the gauge station precipitation value at a place with lower elevation, whether the timescale is daily, monthly or annual. At the same time, the smaller timescale leads to closer relations between elevation and metrics. The research results are important value of the research study of meteorological process in the Qinba mountain area.
文摘The purpose of this study is to advance our current understanding of soil moisture storage in subsurface and water infiltration rate in loess soil. Therefore, a set of experiments was conducted on two soil columns filled with silty clay loam, with and without applying cavity technical method. For the soil column applied with loess cavity, the ponding infiltration was simulated using HYDRUS-2D/3D, version 2.x and the simulated results were verified by those of observation. The results show that 1) the loess cavity significantly decreased the infiltration rates when the flux permeated through it (varying from 0.358 to 0.208 cm·min-1) as compared with no cavity soil column (varying from 0.408 to 0.241 cm·min-1);2) similarly, the total cumulative infiltration and at the termination of wetting front advancement of soil column with cavity were 66 cm and 69 cm lower than that of no cavity soil column (76 and 78 cm), respectively. Consequently, the soil moisture at the subsurface and surrounding the loess cavity was effectively ameliorated;3) the model was capable of predicting water infiltration processes in the soil column with loess cavity, and the root mean square error of simulated water contents, wetting front advancements, cumulative infiltrations, and infiltration rates were from 0.22 to 3.63 cm3·cm-3, 1.6 to 3.63 cm, 3.44 cm, and 0.026 cm·min-1, respectively. Overall, the findings in this study indicate that loess cavity can effectively increase soil moisture storage at shallow surface and the HYDRUS-2D/3D model is capable of simulating and predicting scenarios to help achieve stable shallow soil surface with loess cavity.
文摘The research on the characteristic frequency of precipitation is a great significance for guiding regional agricultural planning, water conservancy project designs, and drought and flood control. Droughts and floods occurred in northern Weihe Loess Plateau, affecting growing and yield of winter wheat in the area. Based on the daily precipitation data of 29 meteorological stations from 1981 to 2012, this study is to address the analysis of three different frequencies of annual precipitation at 5%, 50%, and 95%, and to determine the amount of rainfall excess and water shortage during seven growth stages of winter wheat at 5%, 10%, and 20% frequencies, respectively. Pearson type III curve was selected for this study to analyze the distribution frequency of annual rainfall and rainfall amount following seven growth stages of winter wheat crop in 29 stations of Northern Weihe loess plateau. As a result of our study, annual precipitation is gradually increasing from southwest to northeast of Northern Weihe loess plateau. The highest amount of annual precipitation occurred in the Baoji area and the lowest precipitation covered by the northwest area of Northern Weihe loess plateau. Moreover, the amount of rainfall of seven growth stages indicates that excessive rainfall occurs not only in the first stage (sowing to tillering) and seventh stage (flowering to ripening) but also in second stage (tillering to wintering). In the seventh stage, a large amount of excessive rainfall occurred in Changwu, Bin, Qianyang, Fengxiang, Baojiqu, and Baojixian. Moreover, water shortage is distributed in the third stage (from wintering to greening), the fourth stage (from greening to jointing), the fifth stage (from jointing to heading), and the sixth stage (from heading to flowering). Furthermore, the worst water shortages occurred in Hancheng, Heyang, Chengcheng, Pucheng, Dali, Tongchuan, and Fuping in the fourth stage (greening to jointing stage). Even though we study the crop water requirement under extreme rainfall conditions, the amount of rainwater still supply inadequate in some parts of the winter wheat growth stage. Therefore, this study provides main clues for the next step to study the irrigation water needs of winter wheat crops and to reduce agricultural risks in 29 counties in the northern loess plateau and other regions.
文摘Application of fractal theory on the evolution of nonlinear study of the hydrological system, which found its internal rules from the complex hydrologic system, could make us more fully understand the hydrodynamic characteristics of the complex motion of this system. Taking Weihe River as study area, this paper analyzes daily runoff series’ multi-fractal character and relative fluctuation feature by using the De-trended Fluctuation Analysis (DFA) method. Result shows that the daily runoff series of main channel and branches of Weihe river all shows multi-fractal characteristics clearly, and the turns of multi-fractal intensity of daily runoff series in Weihe river are: Xianyang station (1.388) > Yingge station (0.697) > Linjiacun station (0.665) > Zhangjiashan station (0.662) > Zhuangtou station (0.635). Rainfall, evaporation, water income and human activity and other factors affect the fluctuation character and multi-fractal intensity of daily runoff series through these factors’ superimposition and pining down mutually. This study could provide a theoretical supply for obtaining the quantitative indicators on multi-fractal characteristics about eco-environment situation of watershed, and for runoff forecasting.