期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A multi-feature-based intelligent redundancy elimination scheme for cloud-assisted health systems
1
作者 Ling Xiao beiji zou +4 位作者 Xiaoyan Kui Chengzhang Zhu Wensheng Zhang Xuebing Yang Bob Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期491-510,共20页
Redundancy elimination techniques are extensively investigated to reduce storage overheads for cloud-assisted health systems.Deduplication eliminates the redundancy of duplicate blocks by storing one physical instance... Redundancy elimination techniques are extensively investigated to reduce storage overheads for cloud-assisted health systems.Deduplication eliminates the redundancy of duplicate blocks by storing one physical instance referenced by multiple duplicates.Delta compression is usually regarded as a complementary technique to deduplication to further remove the redundancy of similar blocks,but our observations indicate that this is disobedient when data have sparse duplicate blocks.In addition,there are many overlapped deltas in the resemblance detection process of post-deduplication delta compression,which hinders the efficiency of delta compression and the index phase of resemblance detection inquires abundant non-similar blocks,resulting in inefficient system throughput.Therefore,a multi-feature-based redundancy elimination scheme,called MFRE,is proposed to solve these problems.The similarity feature and temporal locality feature are excavated to assist redundancy elimination where the similarity feature well expresses the duplicate attribute.Then,similarity-based dynamic post-deduplication delta compression and temporal locality-based dynamic delta compression discover more similar base blocks to minimise overlapped deltas and improve compression ratios.Moreover,the clustering method based on block-relationship and the feature index strategy based on bloom filters reduce IO overheads and improve system throughput.Experiments demonstrate that the proposed method,compared to the state-of-the-art method,improves the compression ratio and system throughput by 9.68%and 50%,respectively. 展开更多
关键词 big data cloud computing compression data compression medical applications performance evaluation
下载PDF
DCFNet:An Effective Dual-Branch Cross-Attention Fusion Network for Medical Image Segmentation
2
作者 Chengzhang Zhu Renmao Zhang +5 位作者 Yalong Xiao beiji zou Xian Chai Zhangzheng Yang Rong Hu Xuanchu Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1103-1128,共26页
Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Trans... Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance. 展开更多
关键词 Convolutional neural networks Swin Transformer dual branch medical image segmentation feature cross fusion
下载PDF
A Concise and Varied Visual Features-Based Image Captioning Model with Visual Selection
3
作者 Alaa Thobhani beiji zou +4 位作者 Xiaoyan Kui Amr Abdussalam Muhammad Asim Naveed Ahmed Mohammed Ali Alshara 《Computers, Materials & Continua》 SCIE EI 2024年第11期2873-2894,共22页
Image captioning has gained increasing attention in recent years.Visual characteristics found in input images play a crucial role in generating high-quality captions.Prior studies have used visual attention mechanisms... Image captioning has gained increasing attention in recent years.Visual characteristics found in input images play a crucial role in generating high-quality captions.Prior studies have used visual attention mechanisms to dynamically focus on localized regions of the input image,improving the effectiveness of identifying relevant image regions at each step of caption generation.However,providing image captioning models with the capability of selecting the most relevant visual features from the input image and attending to them can significantly improve the utilization of these features.Consequently,this leads to enhanced captioning network performance.In light of this,we present an image captioning framework that efficiently exploits the extracted representations of the image.Our framework comprises three key components:the Visual Feature Detector module(VFD),the Visual Feature Visual Attention module(VFVA),and the language model.The VFD module is responsible for detecting a subset of the most pertinent features from the local visual features,creating an updated visual features matrix.Subsequently,the VFVA directs its attention to the visual features matrix generated by the VFD,resulting in an updated context vector employed by the language model to generate an informative description.Integrating the VFD and VFVA modules introduces an additional layer of processing for the visual features,thereby contributing to enhancing the image captioning model’s performance.Using the MS-COCO dataset,our experiments show that the proposed framework competes well with state-of-the-art methods,effectively leveraging visual representations to improve performance.The implementation code can be found here:https://github.com/althobhani/VFDICM(accessed on 30 July 2024). 展开更多
关键词 Visual attention image captioning visual feature detector visual feature visual attention
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部