The aim of this study was to carry out a dynamic simulation of the energy and environmental performance of a built space system, with a view to assessing its energy and environmental class. The use of a simulation and...The aim of this study was to carry out a dynamic simulation of the energy and environmental performance of a built space system, with a view to assessing its energy and environmental class. The use of a simulation and modeling tool, supported by various methodological references, formed the basis of our approach. Adopting a systemic perspective, we described the structural and functional aspects of the systems making up built spaces, as well as the associated energy flows. Our approach was also based on a typology, taking into account typical days, structural and functional configurations at different scales and angles of observation. The analysis tool we developed in Java was applied to the built space system of the Patte d’Oie university campus in Ouagadougou. Annual electricity consumption was measured at 124387.34 kWh, closely aligned with the average annual electricity bill (125224.31 kWh), with a maximum relative deviation of 1%, followed by a carbon emission balance of 58337.66 kg eq CO<sub>2</sub> per year. This validation confirmed the effectiveness of our tool. In addition, following the analysis of electricity consumption using our tool, the university campus was classified in energy class B and environmental class C. These results will be based on the emission factors of the energy mix of the West African Economic and Monetary Union (WAEMU) territory, with particular emphasis on Burkina Faso.展开更多
In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be p...In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be placed in air. Moisture content and temperature have been chosen as the main transfer drivers and the equations governing these transfer drivers are based on the Luikov model. These equations are solved by an implicit finite difference scheme. A Fortran code associated with the Thomas algorithm was used to solve the equations. The results show that heat and mass transfer depend on the temperature of the air in contact with the material. As this air temperature rises, the temperature within the material increases, and more rapidly at the material surface. Also, thermal conductivity plays a very important role in the thermal conduction of building materials and influences heat and mass transfer in these materials. Materials with higher thermal conductivity diffuse more heat.展开更多
Solar cookers are a good option in developing countries with high solar potential for environmentally friendly cooking and reduced pressure on forests. However, they are still affected by the intermittency of the sun....Solar cookers are a good option in developing countries with high solar potential for environmentally friendly cooking and reduced pressure on forests. However, they are still affected by the intermittency of the sun. In order to overcome this problem, in this work, a box type solar cooker integrated Jatropha oil as a heat storage material is fabricated and experimented with. The design was examined with a maximum stagnation temperature of 157.7°C. The recorded cooking power vanished between 78.4 and 103.6 W, while thermal efficiency varied from 41.26% to 58.78%. The energy transfer cycle test, including charge and discharge revealed that 91.18% of the heat lost through the cooker could be recovered by the heat storage unit and a large amount is restored to the system during cloudiness or a temperature perturbation.展开更多
This work presents a contribution to the study of the process of cold production by adsorption from solar energy. In this paper, we discuss a comparative study of the operation of a solar adsorption refrigerator using...This work presents a contribution to the study of the process of cold production by adsorption from solar energy. In this paper, we discuss a comparative study of the operation of a solar adsorption refrigerator using the silica gel-water couple and the zeolite-water couple through dynamic modeling and simulation. The mathematical model representing the evolution of heat and mass transfer at each component of the adsorption solar refrigerator has been developed. It appears from this study that the evolution of the temperature of the two adsorbents (zeolite and silica gel) is quasi-similar throughout the operating cycle. However, the maximum mass of water vapor adsorbed by the silicagel (0.24 kg/kg) is higher than that adsorbed by the zeolite (0.201 kg/kg). In the same way, the mass of water vapor cycled, obtained with the silicagel-water couple which is 0.14 kg/kg, is higher than that obtained with the zeolite-water couple which is 0.081 kg/kg. Therefore, the amount of cold produced 9.178 MJ and the solar coefficient of performance 0.378 obtained with the solar refrigerator using the silica gel-water couple, are better.展开更多
Venturi scrubbers are usually used for large particles cleaning in turbulent gaseous flow. In this work, submicron particles scrubbing in laminar forced convection dusty air flow in a rectangular venturi scrubber have...Venturi scrubbers are usually used for large particles cleaning in turbulent gaseous flow. In this work, submicron particles scrubbing in laminar forced convection dusty air flow in a rectangular venturi scrubber have been numerically simulated. Hydrodynamics effects and scrubbing process are investigated in detail. Results are presented as flow velocity, axial pressure, streamlines pattern, particles and droplets mass fraction profile, and collect efficiency. They show that venturi scrubbers can be efficient for submicron particles scrubbing. In fact, a better collect efficiency is obtained at high particles-droplets residence time, high ratio droplets concentration/particles concentration, low venturi diameter ratioand low Reynolds numbers. There is a critical Reynolds number value for which the collect efficiency becomes very low and tends to be constant.展开更多
Two-dimensional transient laminar natural convection in a square cavity containing a porous medium and inclined at an angle of 30°is investigated numerically.The vertical walls are differentially heated,and the h...Two-dimensional transient laminar natural convection in a square cavity containing a porous medium and inclined at an angle of 30°is investigated numerically.The vertical walls are differentially heated,and the horizontal walls are adiabatic.The effect of Rayleigh number on heat transfer and on the road to chaos is analyzed.The natural heat transfer and the Darcy Brinkman equations are solved by using a finite volume method and a Tri Diagonal Matrix Algorithm(TDMA).The results are obtained for a porosity equal to 0.45,a Darcy number and a Prandtl respectively equal to 10^(-3)and 0.71;they are analyzed in terms of streamlines,isotherms,phase portrait,attractors,and spectra amplitude as a function of the Rayleigh number.It is found that,as Rayleigh number increases,the natural convection changes from a steady state to a time-periodic state and finally to a chaotic condition.展开更多
In this work, a numerical study of heat transfers in a metallic pressure cooker isolated with kapok wool was carried out. This equipment works like a thermos, allowing finishing cooking meals only thanks to the heat s...In this work, a numerical study of heat transfers in a metallic pressure cooker isolated with kapok wool was carried out. This equipment works like a thermos, allowing finishing cooking meals only thanks to the heat stored at the beginning of cooking, which generates energy savings. Cooked meals are also kept hot for long hours. In our previous work, we have highlighted the performances of the pressure cooker when making common dishes in Burkina Faso. Also, the parameters (thickness and density) of the insulating matrix allowing having such performances as well as the influence of the climatic conditions on the pressure cooker operation were analyzed in detail in this present work. The numerical methodology is based on the nodal method and the transfer equations obtained by making an energy balance on each node have been discretized using an implicit scheme with finite differences and resolved by the Gauss algorithm. Numerical results validated experimentally show that the thickness of the kapok wool as well as its density play an important role in the pressure cooker operation. In addition, equipment performances are very little influenced by the weather conditions of the city of Ouagadougou (Burkina Faso).展开更多
Revise the abstract as follows:This work aims to investigate numerically the influence of the buoyancy ratio and the Dufour parameter on thermosolutal convection in a square Salt Gradient Solar Pond(SGSP).The absorpti...Revise the abstract as follows:This work aims to investigate numerically the influence of the buoyancy ratio and the Dufour parameter on thermosolutal convection in a square Salt Gradient Solar Pond(SGSP).The absorption of solar radiation by the saline water,the heat losses and the wind effects via the SGSP free surface are considered.The mathematical model is based on the Navier-Stokes equations used in synergy with the thermal energy equation.These equations are solved using the finite volume method and the Gauss algorithm.Velocity-pressure coupling is implemented through the SIMPLE algorithm.Simulations of the SGSP are performed for three values of buoyancy ratio(N=1,2 and 10),three values of Dufour parameter(Df?0,0.2 and 0.8)and some sample meteorological data(Tangier,Morocco).Results show that the highest dimensionless temperature of the storage zone is found for N=10.In the same zone and for the same value of N,the dimensionless salt concentration decreases very slightly versus time(unlike for N=1 or 2).Moreover,increasing Df from 0 to 0.8 causes a decrease in the dimensionless temperature of the SGSP storage zone and this decrease is more pronounced for N=1 and N=2.展开更多
This work concerns a dynamic modeling and a numerical simulation of the operation of an adsorption solar refrigeration system using the zeolite-water couple. For this, a mathematical model representing the evolution o...This work concerns a dynamic modeling and a numerical simulation of the operation of an adsorption solar refrigeration system using the zeolite-water couple. For this, a mathematical model representing the evolution of heat and mass transfer at each component of the solar adsorption refrigerator has been developed. We have adopted the Dubinin-Astakhov model for the adsorption kinetics of the zeolite/water pair. This model allows to describe the phenomenon of adsorption and to calculate the rate of adsorbate (water) in the zeolite (adsorbent) as a function of the temperature and the pressure. The equations governing the operation of the solar adsorption refrigerator, deduced from the thermal and mass balances established at the collector adsorber, condenser and evaporator components, were solved by an implicit finite difference scheme and Gauss Seidel’s iterative method. We have validated the model established by applying it to the model of Allouhi et al. 2014. We analyzed the influence of the adsorbate/adsorbent couples, the solar flux, the ambient temperature on the adsorption and desorption process. The temperature profiles obtained representing the temperature evolution of the glass, the absorbent plate, the zeolite-water mixture, the condenser, the evaporator, as well as the pressure and the adsorbed mass allowed us to evaluate the performance of the solar adsorption refrigerator. SCOP is higher the higher the solar flux captured by the collector-adsorber.展开更多
The building sector consumes much energy either for cooling or heating and is associated to greenhouse gas emissions. To meet energy and environmental challenges, the use of ground-to-air heat exchangers for preheatin...The building sector consumes much energy either for cooling or heating and is associated to greenhouse gas emissions. To meet energy and environmental challenges, the use of ground-to-air heat exchangers for preheating and cooling buildings has recently received considerable attention. They provide substantial energy savings and contribute to the improvement of thermal comfort in buildings. For these systems, the ground temperature plays the main role. The present work aims to investigate numerically the influence of the nature of soil on the thermal behavior of the ground-to-air heat exchanger used for building passive cooling. We have taken into account in this work the influence of the soil nature by considering three types of dry soil: clay soil, sandy-clay soil and sandy soil. The mixed convection equations governing the heat transfers in the earth-to-air heat exchanger have been presented and discretized using the finite difference method with an Alternate Direction Implicit (ADI) scheme. The resulting algebraic equations are then solved using the algorithm of Thomas combined with an iterative Gauss-Seidel procedure. The results show that the flow is dominated by forced convection. The examination of the sensitivity of the model to the type of soil shows that the distributions of contours of streamlines, isotherms, isovalues of moisture are less affected by the variations of the nature of soil through the variation of the diffusivity of the soil. However, it is observed that the temperature values obtained for the clay soil are higher while the sandy soil shows lower temperature values. The values of the ground-to-air heat exchanger efficiency are only slightly influenced by the nature of the soil. Nevertheless, we note a slightly better efficiency for the sandy soil than for the sandy-clayey silt and clayey soils. This result shows that a sandy soil would be more suitable for geothermal system installations.展开更多
In order to enhance the production of biogas and to study the thermal behavior of waste, a numerical study of fluid flows and heat transfers within household waste was developed to predict the distributions of thermal...In order to enhance the production of biogas and to study the thermal behavior of waste, a numerical study of fluid flows and heat transfers within household waste was developed to predict the distributions of thermal fields. The mathematical model is based on the conservation of mass and energy equations. The resulting system of equations is discretized using the finite volume method and solved using the Thomas algorithm. The results of the model studied are compared with the numerical and site measurements results from other authors. The results have been found to be in good agreement. The results show that the mathematical model is able to reproduce the thermal behavior in anaerobic phase in landfills. The isotherms revealed that temperatures are lower in the upper part of the waste cell, very high in the core and decrease slightly in the bottom of the cell due to the biodegradation of waste.展开更多
This work is devoted to an experimental study of metallic pressure cooker insulated with kapok wool, a vegetal biodegradable fiber. Experiments conducted on the cooling of hot water in the equipment revealed very low ...This work is devoted to an experimental study of metallic pressure cooker insulated with kapok wool, a vegetal biodegradable fiber. Experiments conducted on the cooling of hot water in the equipment revealed very low heat losses and a time constant of 60 hours on average. As a result, the equipment makes it possible to finish cooking meals only thanks to the heat stored at the beginning of cooking and keeps cooked dishes warm for long hours. The thermal phase shift of the pressure cooker is around 7?h. Cooking tests conducted on some local dishes revealed about 70% butane gas savings for cooking cowpea and white rice, 38% for cooking fatty rice, 75% for pasta and couscous, and 30% for cooking potato stew. These results show that this technology can contribute to minimizing?energy consumption in the restaurant sector.展开更多
In this work, we perform a numerical study of a water flow over a stepped spillway. This flow is described by the Reynolds averaged Navier-Stokes equation (RANS) associated with the turbulence k - model. These equat...In this work, we perform a numerical study of a water flow over a stepped spillway. This flow is described by the Reynolds averaged Navier-Stokes equation (RANS) associated with the turbulence k - model. These equations are solved using a commercial software based on the finite volume scheme and an unstructured mesh. The air-water flow was modeled using volume of fluid (VOF) and multiphasic methods. The characteristics of the profile, etc.. We analyze the effects on the flow structure of the flow were investigated including the total pressure, the velocity steps and countermarch inclination, the air injection through the countermarch into the water flow and the dynamics water discharges. Results show that the inclination of the countermarch relative to the vertical and the air injection into the water flow increase the total pressure in the neighbourhood of the steps.展开更多
文摘The aim of this study was to carry out a dynamic simulation of the energy and environmental performance of a built space system, with a view to assessing its energy and environmental class. The use of a simulation and modeling tool, supported by various methodological references, formed the basis of our approach. Adopting a systemic perspective, we described the structural and functional aspects of the systems making up built spaces, as well as the associated energy flows. Our approach was also based on a typology, taking into account typical days, structural and functional configurations at different scales and angles of observation. The analysis tool we developed in Java was applied to the built space system of the Patte d’Oie university campus in Ouagadougou. Annual electricity consumption was measured at 124387.34 kWh, closely aligned with the average annual electricity bill (125224.31 kWh), with a maximum relative deviation of 1%, followed by a carbon emission balance of 58337.66 kg eq CO<sub>2</sub> per year. This validation confirmed the effectiveness of our tool. In addition, following the analysis of electricity consumption using our tool, the university campus was classified in energy class B and environmental class C. These results will be based on the emission factors of the energy mix of the West African Economic and Monetary Union (WAEMU) territory, with particular emphasis on Burkina Faso.
文摘In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be placed in air. Moisture content and temperature have been chosen as the main transfer drivers and the equations governing these transfer drivers are based on the Luikov model. These equations are solved by an implicit finite difference scheme. A Fortran code associated with the Thomas algorithm was used to solve the equations. The results show that heat and mass transfer depend on the temperature of the air in contact with the material. As this air temperature rises, the temperature within the material increases, and more rapidly at the material surface. Also, thermal conductivity plays a very important role in the thermal conduction of building materials and influences heat and mass transfer in these materials. Materials with higher thermal conductivity diffuse more heat.
文摘Solar cookers are a good option in developing countries with high solar potential for environmentally friendly cooking and reduced pressure on forests. However, they are still affected by the intermittency of the sun. In order to overcome this problem, in this work, a box type solar cooker integrated Jatropha oil as a heat storage material is fabricated and experimented with. The design was examined with a maximum stagnation temperature of 157.7°C. The recorded cooking power vanished between 78.4 and 103.6 W, while thermal efficiency varied from 41.26% to 58.78%. The energy transfer cycle test, including charge and discharge revealed that 91.18% of the heat lost through the cooker could be recovered by the heat storage unit and a large amount is restored to the system during cloudiness or a temperature perturbation.
文摘This work presents a contribution to the study of the process of cold production by adsorption from solar energy. In this paper, we discuss a comparative study of the operation of a solar adsorption refrigerator using the silica gel-water couple and the zeolite-water couple through dynamic modeling and simulation. The mathematical model representing the evolution of heat and mass transfer at each component of the adsorption solar refrigerator has been developed. It appears from this study that the evolution of the temperature of the two adsorbents (zeolite and silica gel) is quasi-similar throughout the operating cycle. However, the maximum mass of water vapor adsorbed by the silicagel (0.24 kg/kg) is higher than that adsorbed by the zeolite (0.201 kg/kg). In the same way, the mass of water vapor cycled, obtained with the silicagel-water couple which is 0.14 kg/kg, is higher than that obtained with the zeolite-water couple which is 0.081 kg/kg. Therefore, the amount of cold produced 9.178 MJ and the solar coefficient of performance 0.378 obtained with the solar refrigerator using the silica gel-water couple, are better.
文摘Venturi scrubbers are usually used for large particles cleaning in turbulent gaseous flow. In this work, submicron particles scrubbing in laminar forced convection dusty air flow in a rectangular venturi scrubber have been numerically simulated. Hydrodynamics effects and scrubbing process are investigated in detail. Results are presented as flow velocity, axial pressure, streamlines pattern, particles and droplets mass fraction profile, and collect efficiency. They show that venturi scrubbers can be efficient for submicron particles scrubbing. In fact, a better collect efficiency is obtained at high particles-droplets residence time, high ratio droplets concentration/particles concentration, low venturi diameter ratioand low Reynolds numbers. There is a critical Reynolds number value for which the collect efficiency becomes very low and tends to be constant.
基金This work was done at the LTPMP Laboratory,USTHB,Algeria.
文摘Two-dimensional transient laminar natural convection in a square cavity containing a porous medium and inclined at an angle of 30°is investigated numerically.The vertical walls are differentially heated,and the horizontal walls are adiabatic.The effect of Rayleigh number on heat transfer and on the road to chaos is analyzed.The natural heat transfer and the Darcy Brinkman equations are solved by using a finite volume method and a Tri Diagonal Matrix Algorithm(TDMA).The results are obtained for a porosity equal to 0.45,a Darcy number and a Prandtl respectively equal to 10^(-3)and 0.71;they are analyzed in terms of streamlines,isotherms,phase portrait,attractors,and spectra amplitude as a function of the Rayleigh number.It is found that,as Rayleigh number increases,the natural convection changes from a steady state to a time-periodic state and finally to a chaotic condition.
基金the Embassy of France in Burkina Faso,the National Research Fund for Innovation and Development(FONRID)and the International Science Program(ISP)of UPPSALA University for their financial support which allowed the realization of this work.
文摘In this work, a numerical study of heat transfers in a metallic pressure cooker isolated with kapok wool was carried out. This equipment works like a thermos, allowing finishing cooking meals only thanks to the heat stored at the beginning of cooking, which generates energy savings. Cooked meals are also kept hot for long hours. In our previous work, we have highlighted the performances of the pressure cooker when making common dishes in Burkina Faso. Also, the parameters (thickness and density) of the insulating matrix allowing having such performances as well as the influence of the climatic conditions on the pressure cooker operation were analyzed in detail in this present work. The numerical methodology is based on the nodal method and the transfer equations obtained by making an energy balance on each node have been discretized using an implicit scheme with finite differences and resolved by the Gauss algorithm. Numerical results validated experimentally show that the thickness of the kapok wool as well as its density play an important role in the pressure cooker operation. In addition, equipment performances are very little influenced by the weather conditions of the city of Ouagadougou (Burkina Faso).
文摘Revise the abstract as follows:This work aims to investigate numerically the influence of the buoyancy ratio and the Dufour parameter on thermosolutal convection in a square Salt Gradient Solar Pond(SGSP).The absorption of solar radiation by the saline water,the heat losses and the wind effects via the SGSP free surface are considered.The mathematical model is based on the Navier-Stokes equations used in synergy with the thermal energy equation.These equations are solved using the finite volume method and the Gauss algorithm.Velocity-pressure coupling is implemented through the SIMPLE algorithm.Simulations of the SGSP are performed for three values of buoyancy ratio(N=1,2 and 10),three values of Dufour parameter(Df?0,0.2 and 0.8)and some sample meteorological data(Tangier,Morocco).Results show that the highest dimensionless temperature of the storage zone is found for N=10.In the same zone and for the same value of N,the dimensionless salt concentration decreases very slightly versus time(unlike for N=1 or 2).Moreover,increasing Df from 0 to 0.8 causes a decrease in the dimensionless temperature of the SGSP storage zone and this decrease is more pronounced for N=1 and N=2.
文摘This work concerns a dynamic modeling and a numerical simulation of the operation of an adsorption solar refrigeration system using the zeolite-water couple. For this, a mathematical model representing the evolution of heat and mass transfer at each component of the solar adsorption refrigerator has been developed. We have adopted the Dubinin-Astakhov model for the adsorption kinetics of the zeolite/water pair. This model allows to describe the phenomenon of adsorption and to calculate the rate of adsorbate (water) in the zeolite (adsorbent) as a function of the temperature and the pressure. The equations governing the operation of the solar adsorption refrigerator, deduced from the thermal and mass balances established at the collector adsorber, condenser and evaporator components, were solved by an implicit finite difference scheme and Gauss Seidel’s iterative method. We have validated the model established by applying it to the model of Allouhi et al. 2014. We analyzed the influence of the adsorbate/adsorbent couples, the solar flux, the ambient temperature on the adsorption and desorption process. The temperature profiles obtained representing the temperature evolution of the glass, the absorbent plate, the zeolite-water mixture, the condenser, the evaporator, as well as the pressure and the adsorbed mass allowed us to evaluate the performance of the solar adsorption refrigerator. SCOP is higher the higher the solar flux captured by the collector-adsorber.
文摘The building sector consumes much energy either for cooling or heating and is associated to greenhouse gas emissions. To meet energy and environmental challenges, the use of ground-to-air heat exchangers for preheating and cooling buildings has recently received considerable attention. They provide substantial energy savings and contribute to the improvement of thermal comfort in buildings. For these systems, the ground temperature plays the main role. The present work aims to investigate numerically the influence of the nature of soil on the thermal behavior of the ground-to-air heat exchanger used for building passive cooling. We have taken into account in this work the influence of the soil nature by considering three types of dry soil: clay soil, sandy-clay soil and sandy soil. The mixed convection equations governing the heat transfers in the earth-to-air heat exchanger have been presented and discretized using the finite difference method with an Alternate Direction Implicit (ADI) scheme. The resulting algebraic equations are then solved using the algorithm of Thomas combined with an iterative Gauss-Seidel procedure. The results show that the flow is dominated by forced convection. The examination of the sensitivity of the model to the type of soil shows that the distributions of contours of streamlines, isotherms, isovalues of moisture are less affected by the variations of the nature of soil through the variation of the diffusivity of the soil. However, it is observed that the temperature values obtained for the clay soil are higher while the sandy soil shows lower temperature values. The values of the ground-to-air heat exchanger efficiency are only slightly influenced by the nature of the soil. Nevertheless, we note a slightly better efficiency for the sandy soil than for the sandy-clayey silt and clayey soils. This result shows that a sandy soil would be more suitable for geothermal system installations.
文摘In order to enhance the production of biogas and to study the thermal behavior of waste, a numerical study of fluid flows and heat transfers within household waste was developed to predict the distributions of thermal fields. The mathematical model is based on the conservation of mass and energy equations. The resulting system of equations is discretized using the finite volume method and solved using the Thomas algorithm. The results of the model studied are compared with the numerical and site measurements results from other authors. The results have been found to be in good agreement. The results show that the mathematical model is able to reproduce the thermal behavior in anaerobic phase in landfills. The isotherms revealed that temperatures are lower in the upper part of the waste cell, very high in the core and decrease slightly in the bottom of the cell due to the biodegradation of waste.
基金the National Research Fund for Innovation and Development(FONRID)the International Science Program(ISP)for their financial support.
文摘This work is devoted to an experimental study of metallic pressure cooker insulated with kapok wool, a vegetal biodegradable fiber. Experiments conducted on the cooling of hot water in the equipment revealed very low heat losses and a time constant of 60 hours on average. As a result, the equipment makes it possible to finish cooking meals only thanks to the heat stored at the beginning of cooking and keeps cooked dishes warm for long hours. The thermal phase shift of the pressure cooker is around 7?h. Cooking tests conducted on some local dishes revealed about 70% butane gas savings for cooking cowpea and white rice, 38% for cooking fatty rice, 75% for pasta and couscous, and 30% for cooking potato stew. These results show that this technology can contribute to minimizing?energy consumption in the restaurant sector.
基金the ERASMUS MUNDUS AVERROES Program,for the financial support off this study
文摘In this work, we perform a numerical study of a water flow over a stepped spillway. This flow is described by the Reynolds averaged Navier-Stokes equation (RANS) associated with the turbulence k - model. These equations are solved using a commercial software based on the finite volume scheme and an unstructured mesh. The air-water flow was modeled using volume of fluid (VOF) and multiphasic methods. The characteristics of the profile, etc.. We analyze the effects on the flow structure of the flow were investigated including the total pressure, the velocity steps and countermarch inclination, the air injection through the countermarch into the water flow and the dynamics water discharges. Results show that the inclination of the countermarch relative to the vertical and the air injection into the water flow increase the total pressure in the neighbourhood of the steps.