Anthocyanins are a major subclass of flavonoids that have diverse biological functions and benefit human health.In rice(Oryza sativa),the various colors shown by organs are due mainly to the accumulation of anthocyani...Anthocyanins are a major subclass of flavonoids that have diverse biological functions and benefit human health.In rice(Oryza sativa),the various colors shown by organs are due mainly to the accumulation of anthocyanins and are traits associated with domestication.Elucidating the genetic basis of anthocyanin biosynthesis in rice would support the engineering of anthocyanins as well as shedding light on the evolutionary history of O.sativa.We summarize recent progress in rice anthocyanin biosynthesis research,including gene cloning,biosynthetic pathway discovery,and study of the domestication process.We discuss the application of anthocyanin biosynthesis genes in rice breeding.Our object is to broaden knowledge of the genetic basis of anthocyanin biosynthesis in rice and support the breeding of novel rice cultivars.展开更多
Continuous-wave cavity ring-down spectroscopy(CW-CRDS)is an important technical means to monitor greenhouse gases in atmospheric environment.In this paper,a CW-CRDS system is built to meet the needs of atmospheric met...Continuous-wave cavity ring-down spectroscopy(CW-CRDS)is an important technical means to monitor greenhouse gases in atmospheric environment.In this paper,a CW-CRDS system is built to meet the needs of atmospheric methane monitoring.The problem of mode matching is explained from the perspective of transverse mode and longitudinal mode,and the influence of laser injection efficiency on measurement precision is further analyzed.The results of cavity ring-down time measurement show that the measurement precision is higher when the laser is coupled with the fundamental mode.In the experiment,DFB laser is used to calibrate the system with standard methane concentration,and the measurement residual is less than±4×10^(-4)μs^(-1).The methane concentration in the air is monitored in real time for two days.The results show the consistency of the concentration changes over the two days,which further demonstrates the reliability of the system for the measurement of trace methane.By analyzing the influence of mode matching,it not only assists the adjustment of the optical path,but also further improves the sensitivity of the system measurement.展开更多
The non-functional QoS (quality of service) information helps us to select a proper Web-service from the web applications, by using component services such as UDDI[1](Universal Description, Discovery, and Integration)...The non-functional QoS (quality of service) information helps us to select a proper Web-service from the web applications, by using component services such as UDDI[1](Universal Description, Discovery, and Integration) and MDS(Monitoring and Discovery System). MDS is a suite of web services to monitor and discover resources and service on Grids, but MDS only based on function aspects. This paper studies on an approach to provide the QoS information and a discovery model by using MDS and gives a system deployment and implementation plan. The simulation results show that the method is effective in service discovery.展开更多
Objective To evaluate the long-term outcome and prognostic factors of patients with nasopharyngeal carcinoma(NPC)from low-endemic regions of China who received definitive intensity-modulated radiation therapy(IMRT).Me...Objective To evaluate the long-term outcome and prognostic factors of patients with nasopharyngeal carcinoma(NPC)from low-endemic regions of China who received definitive intensity-modulated radiation therapy(IMRT).Methods The clinical data from 608 patients with newly-diagnosed non-metastatic NPC who have received initial treatment at our cancer center from January,2008 to December,2013 were retrospectively reviewed.All patients received definitive IMRT,and 87.7%received platinum-based chemotherapy.Results The median follow-up duration was 51 months(follow-up rate,98.5%;range,10–106 months)for the entire cohort.The 5-year overall survival rate was 79.7%.The 5-year local relapse-free survival rate,regional relapse-free survival rate,distant metastasis-free survival rate and progression-free survival rate were 92.4%,93.3%,79.2%and 74.3%,respectively.A total of 153 patients had experienced treatment failure,with distant metastasis as the primary cause in 77.1%(118/153).Patients with T4 or N3 diseases had a significantly poorer prognosis than other subcategories.Stage T4 and N3 were closely associated with distant metastasis,with the metastatic rate of 29.3%and 45.5%,respectively.Conclusion IMRT provides patients with non-metastatic NPC with satisfactory long-term survival.Both T stage and N stage are important prognostic factors for NPC patients.Patients with T4 or N3 diseases have significantly increased distant metastatic rates and poor survival time.展开更多
The optimal spectral excitation and acquisition scheme is explored by studying the effect of the lensto-sample distance(LTSD)on the spatial homogeneity and emission spectra of flat-top laser converging spot induced pl...The optimal spectral excitation and acquisition scheme is explored by studying the effect of the lensto-sample distance(LTSD)on the spatial homogeneity and emission spectra of flat-top laser converging spot induced plasma.The energy distribution characteristics before and after the convergence of the laser beam with quasi flat-top intensity profile used in this study are theoretically simulated and experimentally measured.For an aspheric converging mirror with a focal length of100 mm,the LTSD(106 mm≥LTSD≥96 mm)was changed by raising the stainless-steel sample height.The plasma images acquired by ICCD show that there is air breakdown when the sample is below the focal point,and a ring-like plasma is produced when the sample is above the focal point.When the sample is located near the focal point,the plasma shape resembles a hemisphere.Since the spectral acquisition region is confined to the plasma core and the image contains all the optical information of the plasma,it has a lower relative standard deviation(RSD)than the spectral lines.When the sample surface is slightly higher than the focal plane of the lens,the converging spot has a quasi flat-top distribution,the spatial distribution of the plasma is more uniform,and the spectral signal is more stable.Simultaneously,there is little difference between the RSD of the plasma image and the laser energy.In order to further improve the stability of the spectral signal,it is necessary to expand the spectral acquisition area.展开更多
The central dogma of modern biology underscores the pivotal roles proteins play in diverse biological processes,the study of which necessitates advanced methods to produce proteins with precision and versatility.Chemi...The central dogma of modern biology underscores the pivotal roles proteins play in diverse biological processes,the study of which necessitates advanced methods to produce proteins with precision and versatility.Chemical protein synthesis,a powerful approach utilizing chemical reactions for the de novo construction of structurally accurate proteins,has emerged as a transformative tool for studying proteins and generating protein derivatives/mimics inaccessible by natural biological machinery,including post-translationally modified proteins,proteins comprised of unnatural amino acids,as well as mirror-image proteins.This review summarizes recent strides in synthetic method developments for chemical protein synthesis,including innovative techniques in solid-phase peptide synthesis,the challenges presented by difficult sequences in either synthesis or folding and the exploration of novel ligation reactions using both chemical and enzymatic methods.Furthermore,the review also delves into newly developed protocols for site-selective protein modifications and the generation of stapled or macrocyclized peptides/miniproteins,highlighting the power of chemical methods to make structurally diverse proteins.Recent applications of synthetic proteins in investigating post-translational modifications(phosphorylation,lipidation,glycosylation,ubiquitination,etc.),mirror-image biological processes and drug development are further discussed.Together,these topics provide a comprehensive overview of the current landscape of chemical protein synthesis.展开更多
Appearance and taste are important factors in rice(Oryza sativa) grain quality. Here, we investigated the taste scores and related eating-quality traits of533 diverse cultivars to assess the relationships between—and...Appearance and taste are important factors in rice(Oryza sativa) grain quality. Here, we investigated the taste scores and related eating-quality traits of533 diverse cultivars to assess the relationships between—and genetic basis of—rice taste and eating-quality. A genome-wide association study highlighted the Wx gene as the major factor underlying variation in taste and eating quality. Notably, a novel waxy(Wx) allele, Wx^(la), which combined two mutations from Wx^(b) and Wx^(in), exhibited a unique phenotype. Reduced GBSSI activity conferred Wx^(la) rice with both a transparent appearance and good eating quality. Haplotype analysis revealed that Wx^(la) was derived from intragenic recombination. In fact,the recombination rate at the Wx locus was estimated to be 3.34 kb/c M, which was about 75-fold higher than the genome-wide mean, indicating that intragenic recombination is a major force driving diversity at the Wx locus. Based on our results, we propose a new network for Wx evolution, noting that new Wx alleles could easily be generated by crossing genotypes with different Wx alleles. This study thus provides insights into the evolution of the Wx locus and facilitates molecular breeding for quality in rice.展开更多
Synthetic biology provides a new paradigm for life science research(“build to learn”)and opens the future journey of biotechnology(“build to use”).Here,we discuss advances of various principles and technologies in...Synthetic biology provides a new paradigm for life science research(“build to learn”)and opens the future journey of biotechnology(“build to use”).Here,we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology,including synthesis and assembly of a genome,DNA storage,gene editing,molecular evolution and de novo design of function proteins,cell and gene circuit engineering,cell-free synthetic biology,artificial intelligence(AI)-aided synthetic biology,as well as biofoundries.We also introduce the concept of quantitative synthetic biology,which is guiding synthetic biology towards increased accuracy and predictability or the real rational design.We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.展开更多
Rice grain oil is a valuable nutrient source.However,the genetic basis of oil biosynthesis in rice grains remains unclear.In this study,we performed a genome-wide association study on oil composition and oil concentra...Rice grain oil is a valuable nutrient source.However,the genetic basis of oil biosynthesis in rice grains remains unclear.In this study,we performed a genome-wide association study on oil composition and oil concentration in a diverse panel of 533 cultivated rice accessions.High variation for 11 oil-related traits was observed,and the oil composition of rice grains showed differentiation among the subpopulations.We identified 46 loci that are significantly associated with grain oil concentration or composition,16 of which were detected in three recombinant inbred line populations.Twenty-six candidate genes encoding enzymes involved in oil metabolism were identified from these 46 loci,four of which(PAL6,LIN6,MYR2,and ARA6)were found to contribute to natural variation in oil composition and to show differentiation among the subpopulations.Interestingly,population genetic analyses revealed that specific haplotypes of PAL6 and LIN6 have been selected in japonica rice.Based on these results,we propose a possible oil biosynthetic pathway in rice grains.Collectively,our results provide new insights into the genetic basis of oil biosynthesis in rice grains and can facilitate marker-based breeding of rice varieties with enhanced oil and grain quality.展开更多
Directed peptides C-terminal modification enabled by the engineered biomolecular catalyst-peptide amidase 12 B has been achieved via computational protein engineering. The engineered enzyme exhibits great promising po...Directed peptides C-terminal modification enabled by the engineered biomolecular catalyst-peptide amidase 12 B has been achieved via computational protein engineering. The engineered enzyme exhibits great promising potential in the C-terminal modification of opioid peptides using prop-2-yn-1-amine(PYA) or prop-2-en-l-amine(PEA) as the nucleophile. A variety of opioid peptides could be readily functionalized at the C-terminal chain in high yield in a mild and selective manner. Notably, modified opioid peptides bearing alkynyl moiety could be further functionalized through well-established click reaction.展开更多
Dear Editor,Severe acute respiratory syndrome coronavirus 2(SARSCo V-2)is the cause of COVID-19,which has posed a massive threat to human health,economy,and security worldwide(Bai et al.,2022).Genomic analysis of SARS...Dear Editor,Severe acute respiratory syndrome coronavirus 2(SARSCo V-2)is the cause of COVID-19,which has posed a massive threat to human health,economy,and security worldwide(Bai et al.,2022).Genomic analysis of SARS-Co V-2 and related coronaviruses revealed that SARS-Co V and SARS-Co V-2likely had ancestors(Xu et al.,2020),which might originate in bats,followed by subsequent spread within intermediate hosts(spillover hosts)and then transmission to humans(Wang et al.,2021).展开更多
基金supported by the National Program on R&D of Transgenic Plants(2016ZX08009003-004)the National Natural Science Foundation of China(91935303,32001530)+1 种基金the China Agriculture Research System(CARS-01-03)the Postdoctoral Science Foundation of China(2020M682441)。
文摘Anthocyanins are a major subclass of flavonoids that have diverse biological functions and benefit human health.In rice(Oryza sativa),the various colors shown by organs are due mainly to the accumulation of anthocyanins and are traits associated with domestication.Elucidating the genetic basis of anthocyanin biosynthesis in rice would support the engineering of anthocyanins as well as shedding light on the evolutionary history of O.sativa.We summarize recent progress in rice anthocyanin biosynthesis research,including gene cloning,biosynthetic pathway discovery,and study of the domestication process.We discuss the application of anthocyanin biosynthesis genes in rice breeding.Our object is to broaden knowledge of the genetic basis of anthocyanin biosynthesis in rice and support the breeding of novel rice cultivars.
基金This research is financial supported by the Natural National Science Foundation of China(Grant Nos.11874364,41877311,and 42005107)the National Key Research and Development Program of China(Grant No.2017YFC0805004)the CAS&Bengbu Technology Transfer Project(Grant No.ZKBB202102).
文摘Continuous-wave cavity ring-down spectroscopy(CW-CRDS)is an important technical means to monitor greenhouse gases in atmospheric environment.In this paper,a CW-CRDS system is built to meet the needs of atmospheric methane monitoring.The problem of mode matching is explained from the perspective of transverse mode and longitudinal mode,and the influence of laser injection efficiency on measurement precision is further analyzed.The results of cavity ring-down time measurement show that the measurement precision is higher when the laser is coupled with the fundamental mode.In the experiment,DFB laser is used to calibrate the system with standard methane concentration,and the measurement residual is less than±4×10^(-4)μs^(-1).The methane concentration in the air is monitored in real time for two days.The results show the consistency of the concentration changes over the two days,which further demonstrates the reliability of the system for the measurement of trace methane.By analyzing the influence of mode matching,it not only assists the adjustment of the optical path,but also further improves the sensitivity of the system measurement.
文摘The non-functional QoS (quality of service) information helps us to select a proper Web-service from the web applications, by using component services such as UDDI[1](Universal Description, Discovery, and Integration) and MDS(Monitoring and Discovery System). MDS is a suite of web services to monitor and discover resources and service on Grids, but MDS only based on function aspects. This paper studies on an approach to provide the QoS information and a discovery model by using MDS and gives a system deployment and implementation plan. The simulation results show that the method is effective in service discovery.
文摘Objective To evaluate the long-term outcome and prognostic factors of patients with nasopharyngeal carcinoma(NPC)from low-endemic regions of China who received definitive intensity-modulated radiation therapy(IMRT).Methods The clinical data from 608 patients with newly-diagnosed non-metastatic NPC who have received initial treatment at our cancer center from January,2008 to December,2013 were retrospectively reviewed.All patients received definitive IMRT,and 87.7%received platinum-based chemotherapy.Results The median follow-up duration was 51 months(follow-up rate,98.5%;range,10–106 months)for the entire cohort.The 5-year overall survival rate was 79.7%.The 5-year local relapse-free survival rate,regional relapse-free survival rate,distant metastasis-free survival rate and progression-free survival rate were 92.4%,93.3%,79.2%and 74.3%,respectively.A total of 153 patients had experienced treatment failure,with distant metastasis as the primary cause in 77.1%(118/153).Patients with T4 or N3 diseases had a significantly poorer prognosis than other subcategories.Stage T4 and N3 were closely associated with distant metastasis,with the metastatic rate of 29.3%and 45.5%,respectively.Conclusion IMRT provides patients with non-metastatic NPC with satisfactory long-term survival.Both T stage and N stage are important prognostic factors for NPC patients.Patients with T4 or N3 diseases have significantly increased distant metastatic rates and poor survival time.
基金supported by the Young Scientists Fund of National Natural Science Foundation of China(No.12004388)the National High Technology Research and Development Program of China(No.2021YFB3202402)+1 种基金the Key Research and Development Plan of Anhui Province(No.202104i07020009)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2021HSCCIP005)。
文摘The optimal spectral excitation and acquisition scheme is explored by studying the effect of the lensto-sample distance(LTSD)on the spatial homogeneity and emission spectra of flat-top laser converging spot induced plasma.The energy distribution characteristics before and after the convergence of the laser beam with quasi flat-top intensity profile used in this study are theoretically simulated and experimentally measured.For an aspheric converging mirror with a focal length of100 mm,the LTSD(106 mm≥LTSD≥96 mm)was changed by raising the stainless-steel sample height.The plasma images acquired by ICCD show that there is air breakdown when the sample is below the focal point,and a ring-like plasma is produced when the sample is above the focal point.When the sample is located near the focal point,the plasma shape resembles a hemisphere.Since the spectral acquisition region is confined to the plasma core and the image contains all the optical information of the plasma,it has a lower relative standard deviation(RSD)than the spectral lines.When the sample surface is slightly higher than the focal plane of the lens,the converging spot has a quasi flat-top distribution,the spatial distribution of the plasma is more uniform,and the spectral signal is more stable.Simultaneously,there is little difference between the RSD of the plasma image and the laser energy.In order to further improve the stability of the spectral signal,it is necessary to expand the spectral acquisition area.
基金supported by the National Key R&D Program of China(2022YFC3401500)the National Natural Science Foundation of China(22137005,92253302,22227810 to Lei Liu,22177004,92153301,22321005 to Suwei Dong,22277020 to Yiming Li,22022703,22177108,22377118 to Ji-Shen Zheng,92353302,22177059 to Yongxiang Chen,22177035 to Jun Guo,22277029,22077036 to Chunmao He,22077078 to Honggang Hu92353302,92053108 to Yanmei Li,22277015 to Junfeng Zhao)。
文摘The central dogma of modern biology underscores the pivotal roles proteins play in diverse biological processes,the study of which necessitates advanced methods to produce proteins with precision and versatility.Chemical protein synthesis,a powerful approach utilizing chemical reactions for the de novo construction of structurally accurate proteins,has emerged as a transformative tool for studying proteins and generating protein derivatives/mimics inaccessible by natural biological machinery,including post-translationally modified proteins,proteins comprised of unnatural amino acids,as well as mirror-image proteins.This review summarizes recent strides in synthetic method developments for chemical protein synthesis,including innovative techniques in solid-phase peptide synthesis,the challenges presented by difficult sequences in either synthesis or folding and the exploration of novel ligation reactions using both chemical and enzymatic methods.Furthermore,the review also delves into newly developed protocols for site-selective protein modifications and the generation of stapled or macrocyclized peptides/miniproteins,highlighting the power of chemical methods to make structurally diverse proteins.Recent applications of synthetic proteins in investigating post-translational modifications(phosphorylation,lipidation,glycosylation,ubiquitination,etc.),mirror-image biological processes and drug development are further discussed.Together,these topics provide a comprehensive overview of the current landscape of chemical protein synthesis.
基金This work was supported by grants from the National Program on R&D of Transgenic Plants(2016ZX08009004)the Natural Science Foundation of China(91935303)+2 种基金the Ministry of Science and Technology(Grants 2016YFD0100501)the earmarked fund for the China Agriculture Research System(CARS-01-03)the Postdoctoral Science Foundation of China(2017M622477)。
文摘Appearance and taste are important factors in rice(Oryza sativa) grain quality. Here, we investigated the taste scores and related eating-quality traits of533 diverse cultivars to assess the relationships between—and genetic basis of—rice taste and eating-quality. A genome-wide association study highlighted the Wx gene as the major factor underlying variation in taste and eating quality. Notably, a novel waxy(Wx) allele, Wx^(la), which combined two mutations from Wx^(b) and Wx^(in), exhibited a unique phenotype. Reduced GBSSI activity conferred Wx^(la) rice with both a transparent appearance and good eating quality. Haplotype analysis revealed that Wx^(la) was derived from intragenic recombination. In fact,the recombination rate at the Wx locus was estimated to be 3.34 kb/c M, which was about 75-fold higher than the genome-wide mean, indicating that intragenic recombination is a major force driving diversity at the Wx locus. Based on our results, we propose a new network for Wx evolution, noting that new Wx alleles could easily be generated by crossing genotypes with different Wx alleles. This study thus provides insights into the evolution of the Wx locus and facilitates molecular breeding for quality in rice.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB29050100,XDB29050500,XDA24020102)to X.E.Zhang,C.Liu and C.Gao,respectivelythe National Natural Science Foundation of China(31725002,31861143017,32022044,62050152 and 32071428)to J.Dai,Y.Yuan,C.You,and X.Wang,respectivelythe National Key Research and Development Program of China(2020YFA0907700,2018YFA0901600,2019YFA09004500)to Y.Feng and P.Wei。
文摘Synthetic biology provides a new paradigm for life science research(“build to learn”)and opens the future journey of biotechnology(“build to use”).Here,we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology,including synthesis and assembly of a genome,DNA storage,gene editing,molecular evolution and de novo design of function proteins,cell and gene circuit engineering,cell-free synthetic biology,artificial intelligence(AI)-aided synthetic biology,as well as biofoundries.We also introduce the concept of quantitative synthetic biology,which is guiding synthetic biology towards increased accuracy and predictability or the real rational design.We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
基金This work was supported by grants from the Ministry of Science and Technology(Grant 2016YFD0100501)the National Program on R&D of Transgenic Plants(2016ZX08009004)+3 种基金the National Natural Science Foundation of China(91935303,31821005 and 32000378)the earmarked fund for the China Agricultural Research System(CARS-01-03)the Hubei province of Science and Technology(2020BBB051)the Postdoctoral Science Foundation of China(2017M622477).
文摘Rice grain oil is a valuable nutrient source.However,the genetic basis of oil biosynthesis in rice grains remains unclear.In this study,we performed a genome-wide association study on oil composition and oil concentration in a diverse panel of 533 cultivated rice accessions.High variation for 11 oil-related traits was observed,and the oil composition of rice grains showed differentiation among the subpopulations.We identified 46 loci that are significantly associated with grain oil concentration or composition,16 of which were detected in three recombinant inbred line populations.Twenty-six candidate genes encoding enzymes involved in oil metabolism were identified from these 46 loci,four of which(PAL6,LIN6,MYR2,and ARA6)were found to contribute to natural variation in oil composition and to show differentiation among the subpopulations.Interestingly,population genetic analyses revealed that specific haplotypes of PAL6 and LIN6 have been selected in japonica rice.Based on these results,we propose a possible oil biosynthetic pathway in rice grains.Collectively,our results provide new insights into the genetic basis of oil biosynthesis in rice grains and can facilitate marker-based breeding of rice varieties with enhanced oil and grain quality.
基金supported by the National Natural Science Foundation of China(No.31601412)the 100 Talent Program grant and Biological Resources Service Network Initiative(No.ZSYS-012)grant from the Chinese Academy of Sciences(No.SKT1604)
文摘Directed peptides C-terminal modification enabled by the engineered biomolecular catalyst-peptide amidase 12 B has been achieved via computational protein engineering. The engineered enzyme exhibits great promising potential in the C-terminal modification of opioid peptides using prop-2-yn-1-amine(PYA) or prop-2-en-l-amine(PEA) as the nucleophile. A variety of opioid peptides could be readily functionalized at the C-terminal chain in high yield in a mild and selective manner. Notably, modified opioid peptides bearing alkynyl moiety could be further functionalized through well-established click reaction.
基金supported by Tsinghua University Spring Breeze Fund(2020Z99CFZ023)。
文摘Dear Editor,Severe acute respiratory syndrome coronavirus 2(SARSCo V-2)is the cause of COVID-19,which has posed a massive threat to human health,economy,and security worldwide(Bai et al.,2022).Genomic analysis of SARS-Co V-2 and related coronaviruses revealed that SARS-Co V and SARS-Co V-2likely had ancestors(Xu et al.,2020),which might originate in bats,followed by subsequent spread within intermediate hosts(spillover hosts)and then transmission to humans(Wang et al.,2021).