This paper used atomic absorption spectrophotometry to determine the content distribution of Cu and Cd in the soil of Duanzhou District,Zhaoqing City.The single factor index method,Nemerow comprehensive index method,p...This paper used atomic absorption spectrophotometry to determine the content distribution of Cu and Cd in the soil of Duanzhou District,Zhaoqing City.The single factor index method,Nemerow comprehensive index method,pollution load index method,geoaccumulation index method,and potential ecological hazard index method were used to analyze the content and pollution status of Cu and Cd in the soil of Duanzhou District,providing a basis for understanding the pollution status of Cu and Cd in the soil of Zhaoqing City.展开更多
Formaldehyde(HCHO)is a common indoor gaseous pollutant,and long-term exposure to it may cause serious damage to the human immune system.Photocatalytic degradation of HCHO is a promising technique.However,most photocat...Formaldehyde(HCHO)is a common indoor gaseous pollutant,and long-term exposure to it may cause serious damage to the human immune system.Photocatalytic degradation of HCHO is a promising technique.However,most photocatalysts have the disadvantage of rapid recombination of photo-generated electron-hole pairs.In this work,the recombination of photogenerated electron holes was proposed to inhibit through the piezoelectric effect.A two-dimensional(2D)piezoelectric material,2H-MoS_(2),was selected to investigate the catalytic performance for HCHO degradation by the synergy of the piezoelectric and photocatalysis properties.The results show that the piezoelectric effect can induce the polarization in 2H-MoS_(2) and inhibit the recombination of photogenerated electron-hole pairs,thus improving the photogeneration of hydroxyl radicals for HCHO degradation.Therefore,the piezoelectric-photo-catalysis synergistic effect based on density functional theory(DFT)calculation was proposed to elucidate the HCHO degradation performance.This work could provide important guidance for the development of effective catalysts for HCHO degradation and the application of 2D piezoelectric materials.展开更多
基金Fourth Batch of Innovative Research Teams from Zhaoqing University(TD202408)Quality Engineering and Teaching Reform Project of Zhaoqing University in 2024(zlgc 2024002)+1 种基金2024 School-level Course Ideological and Political Reform Demonstration Project of Zhaoqing University(ZHAOXUEYUAN[2024]83)Notice on the List of Projects for the Construction of Teaching Quality and Teaching Reform in Undergraduate Universities in Guangdong Province in 2021(Yue Jiao Gao Han[2021]29).
文摘This paper used atomic absorption spectrophotometry to determine the content distribution of Cu and Cd in the soil of Duanzhou District,Zhaoqing City.The single factor index method,Nemerow comprehensive index method,pollution load index method,geoaccumulation index method,and potential ecological hazard index method were used to analyze the content and pollution status of Cu and Cd in the soil of Duanzhou District,providing a basis for understanding the pollution status of Cu and Cd in the soil of Zhaoqing City.
基金financially supported by the National Natural Science Foundation of China(Nos.22176041 and 41807191)the Science and Technology Planning Project of Guangdong Province(No.2017B020216003)。
文摘Formaldehyde(HCHO)is a common indoor gaseous pollutant,and long-term exposure to it may cause serious damage to the human immune system.Photocatalytic degradation of HCHO is a promising technique.However,most photocatalysts have the disadvantage of rapid recombination of photo-generated electron-hole pairs.In this work,the recombination of photogenerated electron holes was proposed to inhibit through the piezoelectric effect.A two-dimensional(2D)piezoelectric material,2H-MoS_(2),was selected to investigate the catalytic performance for HCHO degradation by the synergy of the piezoelectric and photocatalysis properties.The results show that the piezoelectric effect can induce the polarization in 2H-MoS_(2) and inhibit the recombination of photogenerated electron-hole pairs,thus improving the photogeneration of hydroxyl radicals for HCHO degradation.Therefore,the piezoelectric-photo-catalysis synergistic effect based on density functional theory(DFT)calculation was proposed to elucidate the HCHO degradation performance.This work could provide important guidance for the development of effective catalysts for HCHO degradation and the application of 2D piezoelectric materials.