Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l...Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.展开更多
Given the advances in satellite altimetry and multibeam bathymetry,benthic terrain classification based on digital bathymetric models(DBMs)has been widely used for the mapping of benthic topographies.For instance,coba...Given the advances in satellite altimetry and multibeam bathymetry,benthic terrain classification based on digital bathymetric models(DBMs)has been widely used for the mapping of benthic topographies.For instance,cobaltrich crusts(CRCs)are important mineral resources found on seamounts and guyots in the western Pacific Ocean.Thick,plate-like CRCs are known to form on the summit and slopes of seamounts at the 1000–3000 m depth,while the relationship between seamount topography and spatial distribution of CRCs remains unclear.The benthic terrain classification of seamounts can solve this problem,thereby,facilitating the rapid exploration of seamount CRCs.Our study used an EM122 multibeam echosounder to retrieve high-resolution bathymetry data in the CRCs contract license area of China,i.e.,the Jiaxie Guyots in 2015 and 2016.Based on the DBM construted by bathymetirc data,broad-and fine-scale bathymetric position indices were utilized for quantitative classification of the terrain units of the Jiaxie Guyots on multiple scales.The classification revealed four first-order terrain units(e.g.,flat,crest,slope,and depression)and eleven second-order terrain units(e.g.,local crests,depressions on crests,gentle slopes,crests on slopes,and local depressions,etc.).Furthermore,the classification of the terrain and geological analysis indicated that the Weijia Guyot has a large flat summit,with local crests at the southern summit,whereas most of the guyot flanks were covered by gentle slopes.“Radial”mountain ridges have developed on the eastern side,while large-scale gravitational landslides have developed on the western and southern flanks.Additionally,landslide masses can be observed at the bottom of these slopes.The coverage of local crests on the seamount is∼1000 km^(2),and the local crests on the peak and flanks of the guyots may be the areas where thick and continuous plate-like CRCs are likely to occur.展开更多
The current velocity observation of LADCP(Lowered Acoustic Doppler Current Profiler)has the advantages of a large vertical range of observation and high operability compared with traditional current measurement method...The current velocity observation of LADCP(Lowered Acoustic Doppler Current Profiler)has the advantages of a large vertical range of observation and high operability compared with traditional current measurement methods,and is being widely used in the field of ocean observation.Shear and inverse methods are now commonly used by the international marine community to process LADCP data and calculate ocean current profiles.The two methods have their advantages and shortcomings.The shear method calculates the value of current shear more accurately,while the accuracy in an absolute value of the current is lower.The inverse method calculates the absolute value of the current velocity more accurately,but the current shear is less accurate.Based on the shear method,this paper proposes a layering shear method to calculate the current velocity profile by“layering averaging”,and proposes corresponding current calculation methods according to the different types of problems in several field observation data from the western Pacific,forming an independent LADCP data processing system.The comparison results have shown that the layering shear method can achieve the same effect as the inverse method in the calculation of the absolute value of current velocity,while retaining the advantages of the shear method in the calculation of a value of the current shear.展开更多
Ultraviolet absorbents(UVs)make up a group of industrial chemicals that is used in various consumer products and industrial applications.Due to their extensive production and usage,UVs have been detected in multiple e...Ultraviolet absorbents(UVs)make up a group of industrial chemicals that is used in various consumer products and industrial applications.Due to their extensive production and usage,UVs have been detected in multiple environmental matrixes.Recently,UVs have garnered significant attention because of their probable adverse impacts on human health and the environment.This study examines UVs levels in sunscreens and isolation cosmetics and further assesses human exposure to UVs through the application of cosmetics.The total concentrations of nine UVs in 87 sunscreen and isolation cosmetic products ranged from 75.5 to 4.25×10^(4) ng/g.Among them,2-(2-hydroxy-5-methyl-phenyl)benzotriazole(UV-P)and 2-hydroxy-4-(octoxy)benzophenone(UV-531)had the highest concentrations.Use of the EpiSkin model indicated rapid absorption and strong dermal penetration by UV-328 following 36 h of exposure with a cumulative absorption rate of 41.8%±2.82%.Other congeners are expected to be distributed in the dermal tissue and donor fluid.Furthermore,this study explored potential mechanisms implicating skin biochemical barriers in the metabolism and transport of UVs.The potential of UVs to act as substrates and inhibitors of P450 enzymes was assessed,and their metabolites were predicted.Molecular docking simulations demonstrated that UVs can significantly interact and bind with three transport proteins in skin:MDR1,OATP2B1,and OATP3A1.Daily UVs exposure through the skin was assessed,revealing that dermal absorption levels of UV-P in sunscreen sprays(4.66×10^(3) ng/(kg bw day))and sunscreens(6.01×10^(3) ng/(kg bw day))were close to or exceeded the reference dose(RfD)and therefore require more attention.展开更多
Autoreactive CD8^(+)T cells,which play an indispensable role inβcell destruction,represent an emerging target for the prevention of type 1 diabetes(T1D).Altered peptide ligands(APLs)can efficiently induce antigen-spe...Autoreactive CD8^(+)T cells,which play an indispensable role inβcell destruction,represent an emerging target for the prevention of type 1 diabetes(T1D).Altered peptide ligands(APLs)can efficiently induce antigen-specific T cells anergy,apoptosis or shifts in the immune response.Here,we found that HLA-A*0201-restricted CD8^(+)T cell responses against a primaryβ-cell autoantigen insulin epitope InsB15–14 were present in both NOD.β2m null.HHD NOD mice and T1D patients.We generated several APL candidates for InsB15–14 by residue substitution at the p6 position.Only H6F exhibited an inhibitory effect on mInsB1_(5–14)-specific CD8^(+)T cell responses in vitro.H6F treatment significantly reduced the T1D incidence,which was accompanied by diminished autoreactive CD8^(+)T cell responses to mInsB15-14,inhibited infiltration of CD8^(+)and CD4^(+)T cells in the pancreas and reduced pro-inflammatory cytokine production in pancreatic and splenic T cells in NOD.β2m^(null).HHD mice.Mechanistically,H6F treatment significantly augmented a tiny portion of CD8^(+)CD25^(+)Foxp3^(+)T cells in the spleen and especially in the pancreas.This subset exhibited typical Treg phenotypes and required peptide-specific restimulation to exert immunosuppressive activity.Therefore,this APL H6F may be a promising candidate with potential clinical application value for antigen-specific prevention of T1D.展开更多
Anisotropic Pd nanoparticles with highly branched morphologies are urgently needed as building blocks for nanoscale devices, catalysts, and sensing materials owing to their novel structures and unique physicochemical ...Anisotropic Pd nanoparticles with highly branched morphologies are urgently needed as building blocks for nanoscale devices, catalysts, and sensing materials owing to their novel structures and unique physicochemical properties. However, realizing size control and branch manipulation for these materials is very challenging. In this study, we develop a facile ultrafine Cu seed-mediated approach in the aqueous phase to produce novel Pd-Cu trigonal hierarchical nanoframes (THNFs). The main branch of most of the obtained nanocrystals is tripod-like, with advanced branches along the arms as frame units having self-similarity. In this method, the size of the Pd-Cu THNFs can be flexibly controlled by manipulating the nucleation involving the sub-3 nm Cu seeds. These Pd-Cu THNFs outperform Pd black with regard to their ethanol-oxidation performance, having a specific activity and mass activity 9.7 and 6.6 times higher, respectively. This research provides a versatile ultrafine seed-mediated approach for producing size-controlled anisotropic bimetallic nanoframes.展开更多
Controllable fabrication of mesoporous carbon nanoparticles(MCNs)with tunable pore structures is of great interest,due to the remarkable effect of pore structure on electrochemical performance of the materials.However...Controllable fabrication of mesoporous carbon nanoparticles(MCNs)with tunable pore structures is of great interest,due to the remarkable effect of pore structure on electrochemical performance of the materials.However,it has remained a major challenge.Here,we demonstrate the controlled synthesis of MCNs with tunable closed pore structures via a silica-assisted coassembly strategy,which employs polystyrene-block-poly(ethylene oxide)diblock copolymers as soft template,phenolic resol and tetraethyl orthosilicate as carbon and silica precursors,respectively.Through simply varying the sequential cross-linking of the silica and carbon precursors or the copolymer composition,novel MCNs with alluring spherical,hollow-hoop-structured,or yolk-shell-like closed mesopores are tunably prepared.In particular,serving as cathode materials of lithium-sulfur batteries,the resultant silica-hybridized MCNs with the exceptional hollow-hoop mesopores and a moderate sulfur-loading content of 46 wt%exhibit top-level electrochemical performance.This study opens an avenue for tunable construction of mesoporous particles with closed pores and provides clues for the effect of pore geometry on the electrochemical performance of porous cathode materials for lithium-sulfur batteries.展开更多
基金This work was financially supported by Stable Support Plan Program for Higher Education Institutions(20220815094504001)Shenzhen Key Laboratory of Advanced Energy Storage(ZDSYS20220401141000001)+1 种基金This work was also financially supported by the Shenzhen Science and Technology Innovation Commission(GJHZ20200731095606021,20200925155544005)the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(HZQB-KCZYB-2020083)。
文摘Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.
基金The National Natural Science Foundation of China under contract Nos 42072324 and 91958202the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0106+1 种基金the Resource&Environment Project of China Ocean Mineral Resources R&D Association under contract No.DY135-C1-1-03the Geological Survey Project of China Geological Survey under contract No.DD20190629.
文摘Given the advances in satellite altimetry and multibeam bathymetry,benthic terrain classification based on digital bathymetric models(DBMs)has been widely used for the mapping of benthic topographies.For instance,cobaltrich crusts(CRCs)are important mineral resources found on seamounts and guyots in the western Pacific Ocean.Thick,plate-like CRCs are known to form on the summit and slopes of seamounts at the 1000–3000 m depth,while the relationship between seamount topography and spatial distribution of CRCs remains unclear.The benthic terrain classification of seamounts can solve this problem,thereby,facilitating the rapid exploration of seamount CRCs.Our study used an EM122 multibeam echosounder to retrieve high-resolution bathymetry data in the CRCs contract license area of China,i.e.,the Jiaxie Guyots in 2015 and 2016.Based on the DBM construted by bathymetirc data,broad-and fine-scale bathymetric position indices were utilized for quantitative classification of the terrain units of the Jiaxie Guyots on multiple scales.The classification revealed four first-order terrain units(e.g.,flat,crest,slope,and depression)and eleven second-order terrain units(e.g.,local crests,depressions on crests,gentle slopes,crests on slopes,and local depressions,etc.).Furthermore,the classification of the terrain and geological analysis indicated that the Weijia Guyot has a large flat summit,with local crests at the southern summit,whereas most of the guyot flanks were covered by gentle slopes.“Radial”mountain ridges have developed on the eastern side,while large-scale gravitational landslides have developed on the western and southern flanks.Additionally,landslide masses can be observed at the bottom of these slopes.The coverage of local crests on the seamount is∼1000 km^(2),and the local crests on the peak and flanks of the guyots may be the areas where thick and continuous plate-like CRCs are likely to occur.
基金The National Natural Science Foundation of China under contract No.42206033the Marine Geological Survey Program of China Geological Survey under contract No.DD20221706+1 种基金the Research Foundation of National Engineering Research Center for Gas Hydrate Exploration and Development,Innovation Team Project,under contract No.2022GMGSCXYF41003the Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources,under contract No.JG2006.
文摘The current velocity observation of LADCP(Lowered Acoustic Doppler Current Profiler)has the advantages of a large vertical range of observation and high operability compared with traditional current measurement methods,and is being widely used in the field of ocean observation.Shear and inverse methods are now commonly used by the international marine community to process LADCP data and calculate ocean current profiles.The two methods have their advantages and shortcomings.The shear method calculates the value of current shear more accurately,while the accuracy in an absolute value of the current is lower.The inverse method calculates the absolute value of the current velocity more accurately,but the current shear is less accurate.Based on the shear method,this paper proposes a layering shear method to calculate the current velocity profile by“layering averaging”,and proposes corresponding current calculation methods according to the different types of problems in several field observation data from the western Pacific,forming an independent LADCP data processing system.The comparison results have shown that the layering shear method can achieve the same effect as the inverse method in the calculation of the absolute value of current velocity,while retaining the advantages of the shear method in the calculation of a value of the current shear.
基金We gratefully acknowledge the financial support from the National Natural Science Foundation of China(22136006,22021003,and 22106169)Strategic Priority Research Program of the Chinese Academy of Sciences,Grant XDB0750000.
文摘Ultraviolet absorbents(UVs)make up a group of industrial chemicals that is used in various consumer products and industrial applications.Due to their extensive production and usage,UVs have been detected in multiple environmental matrixes.Recently,UVs have garnered significant attention because of their probable adverse impacts on human health and the environment.This study examines UVs levels in sunscreens and isolation cosmetics and further assesses human exposure to UVs through the application of cosmetics.The total concentrations of nine UVs in 87 sunscreen and isolation cosmetic products ranged from 75.5 to 4.25×10^(4) ng/g.Among them,2-(2-hydroxy-5-methyl-phenyl)benzotriazole(UV-P)and 2-hydroxy-4-(octoxy)benzophenone(UV-531)had the highest concentrations.Use of the EpiSkin model indicated rapid absorption and strong dermal penetration by UV-328 following 36 h of exposure with a cumulative absorption rate of 41.8%±2.82%.Other congeners are expected to be distributed in the dermal tissue and donor fluid.Furthermore,this study explored potential mechanisms implicating skin biochemical barriers in the metabolism and transport of UVs.The potential of UVs to act as substrates and inhibitors of P450 enzymes was assessed,and their metabolites were predicted.Molecular docking simulations demonstrated that UVs can significantly interact and bind with three transport proteins in skin:MDR1,OATP2B1,and OATP3A1.Daily UVs exposure through the skin was assessed,revealing that dermal absorption levels of UV-P in sunscreen sprays(4.66×10^(3) ng/(kg bw day))and sunscreens(6.01×10^(3) ng/(kg bw day))were close to or exceeded the reference dose(RfD)and therefore require more attention.
基金supported by the National Natural Science Foundation of China(No.31570931 and No.31771002)the National Key Project for Research&Development of China(Grant no.2016YFA0502204).
文摘Autoreactive CD8^(+)T cells,which play an indispensable role inβcell destruction,represent an emerging target for the prevention of type 1 diabetes(T1D).Altered peptide ligands(APLs)can efficiently induce antigen-specific T cells anergy,apoptosis or shifts in the immune response.Here,we found that HLA-A*0201-restricted CD8^(+)T cell responses against a primaryβ-cell autoantigen insulin epitope InsB15–14 were present in both NOD.β2m null.HHD NOD mice and T1D patients.We generated several APL candidates for InsB15–14 by residue substitution at the p6 position.Only H6F exhibited an inhibitory effect on mInsB1_(5–14)-specific CD8^(+)T cell responses in vitro.H6F treatment significantly reduced the T1D incidence,which was accompanied by diminished autoreactive CD8^(+)T cell responses to mInsB15-14,inhibited infiltration of CD8^(+)and CD4^(+)T cells in the pancreas and reduced pro-inflammatory cytokine production in pancreatic and splenic T cells in NOD.β2m^(null).HHD mice.Mechanistically,H6F treatment significantly augmented a tiny portion of CD8^(+)CD25^(+)Foxp3^(+)T cells in the spleen and especially in the pancreas.This subset exhibited typical Treg phenotypes and required peptide-specific restimulation to exert immunosuppressive activity.Therefore,this APL H6F may be a promising candidate with potential clinical application value for antigen-specific prevention of T1D.
基金We acknowledge financial support from the National Basic Research Program of China (Nos. 2014CB845605 and 2013CB933200), the National Natural Science Foundation of China (Nos. 21521061, 21573238, 21331006, 21571177, and 21520102001), Strtegic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), the Natural Science Foundation of the Fujian Province (No. 2014J05022), and the Chunmiao Project of the Haixi Institute of the Chinese Academy of Sciences (No. CMZX-2014-004).
文摘Anisotropic Pd nanoparticles with highly branched morphologies are urgently needed as building blocks for nanoscale devices, catalysts, and sensing materials owing to their novel structures and unique physicochemical properties. However, realizing size control and branch manipulation for these materials is very challenging. In this study, we develop a facile ultrafine Cu seed-mediated approach in the aqueous phase to produce novel Pd-Cu trigonal hierarchical nanoframes (THNFs). The main branch of most of the obtained nanocrystals is tripod-like, with advanced branches along the arms as frame units having self-similarity. In this method, the size of the Pd-Cu THNFs can be flexibly controlled by manipulating the nucleation involving the sub-3 nm Cu seeds. These Pd-Cu THNFs outperform Pd black with regard to their ethanol-oxidation performance, having a specific activity and mass activity 9.7 and 6.6 times higher, respectively. This research provides a versatile ultrafine seed-mediated approach for producing size-controlled anisotropic bimetallic nanoframes.
基金This work was supported by the National Natural Science Foundation of China(nos.21774076,61774102,and 51573091)the National Key Research and Development Program of China(no.2017YFE0195800)+2 种基金the Program of the Shanghai Committee of Science and Technology(no.17JC1403200)the Program of Shanghai Academic Research Leader(no.19XD1421700)the Program of Shanghai Eastern Scholar.
文摘Controllable fabrication of mesoporous carbon nanoparticles(MCNs)with tunable pore structures is of great interest,due to the remarkable effect of pore structure on electrochemical performance of the materials.However,it has remained a major challenge.Here,we demonstrate the controlled synthesis of MCNs with tunable closed pore structures via a silica-assisted coassembly strategy,which employs polystyrene-block-poly(ethylene oxide)diblock copolymers as soft template,phenolic resol and tetraethyl orthosilicate as carbon and silica precursors,respectively.Through simply varying the sequential cross-linking of the silica and carbon precursors or the copolymer composition,novel MCNs with alluring spherical,hollow-hoop-structured,or yolk-shell-like closed mesopores are tunably prepared.In particular,serving as cathode materials of lithium-sulfur batteries,the resultant silica-hybridized MCNs with the exceptional hollow-hoop mesopores and a moderate sulfur-loading content of 46 wt%exhibit top-level electrochemical performance.This study opens an avenue for tunable construction of mesoporous particles with closed pores and provides clues for the effect of pore geometry on the electrochemical performance of porous cathode materials for lithium-sulfur batteries.