A new scintillating fiber detector inside magnetic shielding tube was designed and assembled for use in the next round of fusion experiments in the experimental advanced superconducting tokamak to provide D–T neutron...A new scintillating fiber detector inside magnetic shielding tube was designed and assembled for use in the next round of fusion experiments in the experimental advanced superconducting tokamak to provide D–T neutron yield with time resolution.In this study,Geant4 simulations were used to obtain the pulse height spectra for ideal signals produced when detecting neutrons and gamma rays of multiple energies.One of the main sources of interference was found to be low-energy neutrons below 10–5 MeV,which can generate numerous secondary particles in the detector components,such as the magnetic shielding tube,leading to high-amplitude output signals.To address this issue,a compact thermal neutron shield containing a 1-mm Cd layer outside the magnetic shielding tube and a 5-mm inner Pb layer was specifically designed.Adverse effects on the measurement of fast neutrons and the shielding effect on gamma rays were considered.This can suppress the height of the signals caused by thermal neutrons to a level below the height corresponding to neutrons above 4 MeV because the yield of the latter is used for detector calibration.In addition,the detector has relatively flat sensitivity curves in the fast neutron region,with the intrinsic detection efficiencies(IDEs)of approximately 40%.For gamma rays with energies that are not too high(<8 MeV),the IDEs of the detector are only approximately 20%,whereas for gamma rays below 1 MeV,the response curve cuts off earlier in the low-energy region,which is beneficial for avoiding counting saturation and signal accumulation.展开更多
Real-time monitoring of the 14-MeV D-T fusion neutron yield is urgently required for the triton burnup study on the Experimental Advanced Superconducting Tokamak (EAST). In this study, we developed an optimal design o...Real-time monitoring of the 14-MeV D-T fusion neutron yield is urgently required for the triton burnup study on the Experimental Advanced Superconducting Tokamak (EAST). In this study, we developed an optimal design of a fast-neutron detector based on the scintillating fiber (Sci-Fi) to provide D-T neutron yield through Geant4simulation. The effect on the detection performance is concerned when changing the number of the Sci-Fis embedded in the probe head, minimum distance between the fibers, length of the fibers, or substrate material of the probe head. The maximum number of scintillation photons generated by the n/γ source particles and output by the light guide within an event (event:the entire simulation process for one source particle) was used to quantify the n/γ resolution of the detector as the main basis. And the intrinsic detection efficiency was used as another evaluation criterion. The results demonstrate that the optimal design scheme is to use a 5 cm probe head whose substrate material is pure aluminum, in which 463 Sci-Fis with the same length of 5 cm are embedded, and the minimum distance between the centers of the two fibers is 2 mm. The optimized detector exhibits clear directionality in the simulation, which is in line with the expectation and experimental data provided in the literature. This study presents the variation trends of the performance of the SciFi detector when its main parameters change, which is beneficial for the targeted design and optimization of the Sci-Fi detector used in a specific radiation environment.展开更多
The Local Monte Carlo(LMC)method is used to solve the problems of deep penetration and long time in the neutronics calculation of the radial neutron camera(RNC)diagnostic system on the experimental advanced supercondu...The Local Monte Carlo(LMC)method is used to solve the problems of deep penetration and long time in the neutronics calculation of the radial neutron camera(RNC)diagnostic system on the experimental advanced superconducting tokamak(EAST),and the radiation distribution of the RNC and the neutron flux at the detector positions of each channel are obtained.Compared with the results calculated by the global variance reduction method,it is shown that the LMC calculation is reliable within the reasonable error range.The calculation process of LMC is analyzed in detail,and the transport process of radiation particles is simulated in two steps.In the first step,an integrated neutronics model considering the complex window environment and a neutron source model based on EAST plasma shape are used to support the calculation.The particle information on the equivalent surface is analyzed to evaluate the rationality of settings of equivalent surface source and boundary.Based on the characteristic that only a local geometric model is needed in the second step,it is shown that the LMC is an advantageous calculation method for the nuclear shielding design of tokamak diagnostic systems.展开更多
A liquid metal reactor(LMR) loaded with a fuel compound of uranium and beryllium(U-Be alloy fuel),which was cooled by a lead-bismuth eutectic alloy(PbBi),has been applied in Russian Alfa-class nuclear submarines.Becau...A liquid metal reactor(LMR) loaded with a fuel compound of uranium and beryllium(U-Be alloy fuel),which was cooled by a lead-bismuth eutectic alloy(PbBi),has been applied in Russian Alfa-class nuclear submarines.Because of the large amount of beryllium in the core, the reaction between the beryllium atoms and neutrons could result in the accumulation of 3 He and 6 Li, which are called the "poisoned elements" owing to their large thermal neutron capture cross section. The accumulation of neutron absorber can affect the performance of a reactor. In this study, the Super Multi-functional Calculation Program(SuperMC) code, which was developed by Institute of Nuclear Energy Safety Technology of the Chinese Academy of Sciences(INEST, CAS), was adopted to illustrate the influence of beryllium on an LMR.展开更多
Isotopic signature is a powerful tool to discriminate methane(CH_(4)) source types and constrain regional and global scale CH_(4) budgets.Peatlands on the Qinghai-Tibetan Plateau are poorly understood about the isotop...Isotopic signature is a powerful tool to discriminate methane(CH_(4)) source types and constrain regional and global scale CH_(4) budgets.Peatlands on the Qinghai-Tibetan Plateau are poorly understood about the isotopic signature of CH_(4) due to the limited experimental conditions.In this study,three campaigns of diurnal air samples spacing 2-3 h were taken from an alpine peatland on the eastern Qinghai-Tibetan Plateau to investigate its source signal characteristics.Both CH_(4) concentration and its stable carbon isotope(δ^(13)C-CH_(4)) were measured to derive the carbon isotopic signature of the CH_(4) source using the Keeling plot technique.Diurnal variation patterns in CH_(4) concentration and δ^(13)C-CH_(4) were observed during summertime,with depleted δ^(13)C-CH_(4) signals and high CH_(4) concentration appearing at nighttime.The δ^(13)C-CH4 signature during summer was calculated to be-71 % ± 1.3%,which falls within the range of other wetland studies and close to high-latitude peatlands.The boundary layer dynamic and CH_(4) source were supposed to influence the measured CH_(4) concentration and δ^(13)C-CH_(4.)Further investigations of CH_(4) isotopic signals into the nongrowing season are still needed to constrain the δ^(13)C-CH_(4) signature and its environmental controls in this region.展开更多
Correction to:Acta Geochim https://doi.org/10.1007/S11631-021-00477-Z The article“Variations of methane stable isotopic values from an Alpine peatland on the eastern Qinghai-Tibetan Plaleau"written by Qian Guo,H...Correction to:Acta Geochim https://doi.org/10.1007/S11631-021-00477-Z The article“Variations of methane stable isotopic values from an Alpine peatland on the eastern Qinghai-Tibetan Plaleau"written by Qian Guo,Haijun Peng,Bing Hong,Hu Yao,Yongxuan Zhu,Hanwei Ding,Ning An,Yetang Hong was originally published electronically on the publisher's internet portal(currently SpringerLink)on 3 June 2021.There were some errors in the published article which should be corrected.The authors apologize for these errors and any confusion caused.展开更多
Wetlands store large amounts of carbon stocks and are essential in both global carbon cycling and regional ecosystem services.Understanding the dynamics of wetland carbon exchange is crucial for assessing carbon budge...Wetlands store large amounts of carbon stocks and are essential in both global carbon cycling and regional ecosystem services.Understanding the dynamics of wetland carbon exchange is crucial for assessing carbon budgets and predicting their future evolution.Although many studies have been conducted on the effects of climate change on the ecosystem carbon cycle,little is known regarding carbon emissions from the alpine wetlands in arid northwest China.In this study,we used an automatic chamber system(LI-8100A)to measure ecosystem respiration(ER)in the Bayinbuluk alpine wetland in northwest China.The ER showed a significant bimodal diurnal variation,with peak values appearing at 16:30 and 23:30(Beijing time,UTC+8).A clear seasonal pattern in ER was observed,with the highest value(19.38μmol m-2 s-l)occurring in August and the lowest value(0.11μmol m-2 s-1)occurring in late December.The annual ER in 2018 was 678 g C m-2 and respiration during the non-growing season accounted for 13%of the annual sum.Nonlinear regression revealed that soil temperature at 5 cm depth and soil water content(SwC)were the main factors controlling the seasonal variation in ER.The diurnal variation in ER was mainly controlled by air temperature and solar radiation.Higher temperature sensitivity(Qio)occurred under conditions of lower soil temperatures and medium SWC(25%≤SWC≤40%).The present study deepens our understanding of CO,emissions in alpine wetland ecosystems and helps evaluate the carbon budget in alpine wetlands in arid regions.展开更多
基金supported by the University Synergy Innovation Program of Anhui Province(No.GXXT-2022-001)the Institute of Energy,Hefei Comprehensive National Science Center(Anhui Energy Laboratory)under Grant No.21KZS205 and 21KZL401the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228).
文摘A new scintillating fiber detector inside magnetic shielding tube was designed and assembled for use in the next round of fusion experiments in the experimental advanced superconducting tokamak to provide D–T neutron yield with time resolution.In this study,Geant4 simulations were used to obtain the pulse height spectra for ideal signals produced when detecting neutrons and gamma rays of multiple energies.One of the main sources of interference was found to be low-energy neutrons below 10–5 MeV,which can generate numerous secondary particles in the detector components,such as the magnetic shielding tube,leading to high-amplitude output signals.To address this issue,a compact thermal neutron shield containing a 1-mm Cd layer outside the magnetic shielding tube and a 5-mm inner Pb layer was specifically designed.Adverse effects on the measurement of fast neutrons and the shielding effect on gamma rays were considered.This can suppress the height of the signals caused by thermal neutrons to a level below the height corresponding to neutrons above 4 MeV because the yield of the latter is used for detector calibration.In addition,the detector has relatively flat sensitivity curves in the fast neutron region,with the intrinsic detection efficiencies(IDEs)of approximately 40%.For gamma rays with energies that are not too high(<8 MeV),the IDEs of the detector are only approximately 20%,whereas for gamma rays below 1 MeV,the response curve cuts off earlier in the low-energy region,which is beneficial for avoiding counting saturation and signal accumulation.
基金supported by the Users with Excellence Program of Hefei Science Center CAS(No.2020HSC-UE012)the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the Institute of Energy,Hefei Comprehensive National Science Center(No.21KZS205,21KZL401).
文摘Real-time monitoring of the 14-MeV D-T fusion neutron yield is urgently required for the triton burnup study on the Experimental Advanced Superconducting Tokamak (EAST). In this study, we developed an optimal design of a fast-neutron detector based on the scintillating fiber (Sci-Fi) to provide D-T neutron yield through Geant4simulation. The effect on the detection performance is concerned when changing the number of the Sci-Fis embedded in the probe head, minimum distance between the fibers, length of the fibers, or substrate material of the probe head. The maximum number of scintillation photons generated by the n/γ source particles and output by the light guide within an event (event:the entire simulation process for one source particle) was used to quantify the n/γ resolution of the detector as the main basis. And the intrinsic detection efficiency was used as another evaluation criterion. The results demonstrate that the optimal design scheme is to use a 5 cm probe head whose substrate material is pure aluminum, in which 463 Sci-Fis with the same length of 5 cm are embedded, and the minimum distance between the centers of the two fibers is 2 mm. The optimized detector exhibits clear directionality in the simulation, which is in line with the expectation and experimental data provided in the literature. This study presents the variation trends of the performance of the SciFi detector when its main parameters change, which is beneficial for the targeted design and optimization of the Sci-Fi detector used in a specific radiation environment.
基金support and help in this research.This work was supported by Users with Excellence Program of Hefei Science Center CAS(No.2020HSC-UE012)Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)National Natural Science Foundation of China(No.11605241)。
文摘The Local Monte Carlo(LMC)method is used to solve the problems of deep penetration and long time in the neutronics calculation of the radial neutron camera(RNC)diagnostic system on the experimental advanced superconducting tokamak(EAST),and the radiation distribution of the RNC and the neutron flux at the detector positions of each channel are obtained.Compared with the results calculated by the global variance reduction method,it is shown that the LMC calculation is reliable within the reasonable error range.The calculation process of LMC is analyzed in detail,and the transport process of radiation particles is simulated in two steps.In the first step,an integrated neutronics model considering the complex window environment and a neutron source model based on EAST plasma shape are used to support the calculation.The particle information on the equivalent surface is analyzed to evaluate the rationality of settings of equivalent surface source and boundary.Based on the characteristic that only a local geometric model is needed in the second step,it is shown that the LMC is an advantageous calculation method for the nuclear shielding design of tokamak diagnostic systems.
基金supported by the Natural Science Foundation of Anhui Province of China(No.1608085ME107)
文摘A liquid metal reactor(LMR) loaded with a fuel compound of uranium and beryllium(U-Be alloy fuel),which was cooled by a lead-bismuth eutectic alloy(PbBi),has been applied in Russian Alfa-class nuclear submarines.Because of the large amount of beryllium in the core, the reaction between the beryllium atoms and neutrons could result in the accumulation of 3 He and 6 Li, which are called the "poisoned elements" owing to their large thermal neutron capture cross section. The accumulation of neutron absorber can affect the performance of a reactor. In this study, the Super Multi-functional Calculation Program(SuperMC) code, which was developed by Institute of Nuclear Energy Safety Technology of the Chinese Academy of Sciences(INEST, CAS), was adopted to illustrate the influence of beryllium on an LMR.
基金financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB40010000)the National Natural Science Foundation of China (Grant Nos.41907288,41673119,and 41773140)+1 种基金the Science and Technology Foundation of Guizhou Province (Grant Nos.[2019]1317 and [2020]1Y193)supported by the“Light of West China”Program and the CAS Scholarship。
文摘Isotopic signature is a powerful tool to discriminate methane(CH_(4)) source types and constrain regional and global scale CH_(4) budgets.Peatlands on the Qinghai-Tibetan Plateau are poorly understood about the isotopic signature of CH_(4) due to the limited experimental conditions.In this study,three campaigns of diurnal air samples spacing 2-3 h were taken from an alpine peatland on the eastern Qinghai-Tibetan Plateau to investigate its source signal characteristics.Both CH_(4) concentration and its stable carbon isotope(δ^(13)C-CH_(4)) were measured to derive the carbon isotopic signature of the CH_(4) source using the Keeling plot technique.Diurnal variation patterns in CH_(4) concentration and δ^(13)C-CH_(4) were observed during summertime,with depleted δ^(13)C-CH_(4) signals and high CH_(4) concentration appearing at nighttime.The δ^(13)C-CH4 signature during summer was calculated to be-71 % ± 1.3%,which falls within the range of other wetland studies and close to high-latitude peatlands.The boundary layer dynamic and CH_(4) source were supposed to influence the measured CH_(4) concentration and δ^(13)C-CH_(4.)Further investigations of CH_(4) isotopic signals into the nongrowing season are still needed to constrain the δ^(13)C-CH_(4) signature and its environmental controls in this region.
文摘Correction to:Acta Geochim https://doi.org/10.1007/S11631-021-00477-Z The article“Variations of methane stable isotopic values from an Alpine peatland on the eastern Qinghai-Tibetan Plaleau"written by Qian Guo,Haijun Peng,Bing Hong,Hu Yao,Yongxuan Zhu,Hanwei Ding,Ning An,Yetang Hong was originally published electronically on the publisher's internet portal(currently SpringerLink)on 3 June 2021.There were some errors in the published article which should be corrected.The authors apologize for these errors and any confusion caused.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB40010300)the National Natural Science Foundation of China(41907288,41673119 and 41773140)+1 种基金the Science and Technology Foundation of Guizhou Province([2019]1317 and[2020]1Y193)the Opening Fund of the State KeyLaboratoryof Environmental Geochemistry(SKLEG2021214).
文摘Wetlands store large amounts of carbon stocks and are essential in both global carbon cycling and regional ecosystem services.Understanding the dynamics of wetland carbon exchange is crucial for assessing carbon budgets and predicting their future evolution.Although many studies have been conducted on the effects of climate change on the ecosystem carbon cycle,little is known regarding carbon emissions from the alpine wetlands in arid northwest China.In this study,we used an automatic chamber system(LI-8100A)to measure ecosystem respiration(ER)in the Bayinbuluk alpine wetland in northwest China.The ER showed a significant bimodal diurnal variation,with peak values appearing at 16:30 and 23:30(Beijing time,UTC+8).A clear seasonal pattern in ER was observed,with the highest value(19.38μmol m-2 s-l)occurring in August and the lowest value(0.11μmol m-2 s-1)occurring in late December.The annual ER in 2018 was 678 g C m-2 and respiration during the non-growing season accounted for 13%of the annual sum.Nonlinear regression revealed that soil temperature at 5 cm depth and soil water content(SwC)were the main factors controlling the seasonal variation in ER.The diurnal variation in ER was mainly controlled by air temperature and solar radiation.Higher temperature sensitivity(Qio)occurred under conditions of lower soil temperatures and medium SWC(25%≤SWC≤40%).The present study deepens our understanding of CO,emissions in alpine wetland ecosystems and helps evaluate the carbon budget in alpine wetlands in arid regions.