期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Research on PCA and KPCA Self-Fusion Based MSTAR SAR Automatic Target Recognition Algorithm 被引量:6
1
作者 Chuang Lin Fei Peng +2 位作者 bing-hui wang Wei-Feng Sun Xiang-Jie Kong 《Journal of Electronic Science and Technology》 CAS 2012年第4期352-357,共6页
This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear featu... This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear feature extracted from kernel principal component analysis (KPCA) respectively, and then utilizes the adaptive feature fusion algorithm which is based on the weighted maximum margin criterion (WMMC) to fuse the features in order to achieve better performance. The linear regression classifier is used in the experiments. The experimental results indicate that the proposed self-fusion algorithm achieves higher recognition rate compared with the traditional PCA and KPCA feature fusion algorithms. 展开更多
关键词 Automatic target recognition principal component analysis self-fusion syntheticaperture radar.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部