Excessive exudate at wound sites increases treatment difficulty and severely decelerates the healing process.In wound exu-date management,dressings with unidirectional liquid transport capability have exhibited enormo...Excessive exudate at wound sites increases treatment difficulty and severely decelerates the healing process.In wound exu-date management,dressings with unidirectional liquid transport capability have exhibited enormous potential.However,it remains challenging to improve the one-way liquid transport efficiency.Herein,a trilayered fibrous dressing is constructed by sequentially electrospinning polyurethane(PU)and polyvinylidene fluoride(PVDF)onto cotton fabric.Through hot pressing,a stable wettability gradient is formed across the PVDF/PU/cotton dressing due to the melting and bridging of PU nanofib-ers.The trilayered dressing exhibited rapid unidirectional transport with water penetrating from the hydrophobic side to the hydrophilic side in 6 s.The hydrostatic pressure from the hydrophilic side to the hydrophobic side is 569%higher than that from the hydrophobic side to the hydrophilic side,indicating that the dressing has a profound unidirectional conductivity.In vivo experiments demonstrates that the trilayered dressing can accelerate the wound healing process,especially in the early stages of wound occurrence,by quickly draining the excessive exudate.This study provides a new method to construct wound dressings with wettability gradients,which are advantageous for efficient exudate removal.展开更多
As the main byproduct of cotton production,cottonseed yields edible vegetable oil,ruminant feed,and industrial products.We evaluated the individual and interactive effects of elevated air temperature and soil drought ...As the main byproduct of cotton production,cottonseed yields edible vegetable oil,ruminant feed,and industrial products.We evaluated the individual and interactive effects of elevated air temperature and soil drought on cottonseed yield and nutritional quality using two cotton cultivars,Sumian 15(heat-susceptible)and PHY370 WR(heat-tolerant).The experiment was conducted under three levels of soil relative water content(SRWC):(75±5)%,(60±5)%and(45±5)%and two temperature regimes:ambient temperature(AT,31.0/26.4℃,mean daytime/night temperature)and elevated temperature(ET,33.4/28.9℃).Cottonseed yield,boll number,seed number,and single-seed weight were lower under combined ET and SRWC(45±5)%than either individual stress or combined stresses in comparison with the control treatment(SRWC(75±5)%under AT).Drought tended to increase oil content and reduce protein content,whereas ET showed almost the opposite effects.Under the combination of ET and soil drought,oil content was still higher than under control,although ET weakened the beneficial effects of drought.For protein,ET offset the negative impacts of mild drought on protein content,but protein content was not increased under SRWC(45±5)%.Each stress or combined stress reduced oil and protein yields under all treatments,owing to declines in cottonseed yields.The combined stress reduced unsaturated fatty acid(UFA)/saturated fatty acid(SFA)and essential amino acid(EAA)/non-essential amino acid(NAA).Compared with PHY370 WR,the sensitivity of Sumian 15 to the combined factors was evidenced in the following ways:(1)seed yield,yield components,oil and protein yields were decreased more for Sumian 15 than PHY370 WR compared with the control treatment;(2)the combined stresses caused lower oil content,UFA,and UFA/SFA in Sumian 15 than PHY370 WR;(3)interaction effects of the combined factors on protein content and EAA/NAA were detected only in Sumian 15.展开更多
Ibuprofen(IBU)is widely used in the world as anti-inflammatory drug,which posed health risk to the environment.A bacterium capable of degrading IBU was isolated from activated sludge in a sewage treatment plant.Accord...Ibuprofen(IBU)is widely used in the world as anti-inflammatory drug,which posed health risk to the environment.A bacterium capable of degrading IBU was isolated from activated sludge in a sewage treatment plant.According to its morphological,physiologic,and biochemical characteristics,as well as 16S rRNA sequence analysis,the strain was identified as Serratia marcescens BL1(BL1).Degradation of IBU required the presence of primary substrate.After a five-day cultivation with yeast powder at 30℃ and pH 7,the highest degradation(93.47%2.37%)was achieved.The process of BL1 degrading IBU followed first-order reaction kinetics.The BL1 strain was applied to a small biological aerated filter(BAF)device to form a biofilm with activated sludge.IBU removal by the BAF was consistent with the results of static tests.The removal of IBU was 32.01% to 44.04% higher than for a BAF without BL1.The indigenous bacterial community was able to effectively remove CODMn(permanganate index)and ammonia nitrogen in the presence of BL1.展开更多
The quantum private query(QPQ)is a quantum solution for the symmetrically private information retrieval problem.We study the security of quantum-key-distribution-based QPQ with weak coherent pulses.The result shows th...The quantum private query(QPQ)is a quantum solution for the symmetrically private information retrieval problem.We study the security of quantum-key-distribution-based QPQ with weak coherent pulses.The result shows that multiphoton pulses have posed a serious threat to the participant’s privacy in QPQ protocols.Then we propose a decoy-state method that can help the honest participant detect the attack by exploiting multiphoton pulses and improving the key distillation process to defend against such attack.The analysis demonstrates that our decoy-state method significantly improves the security of the QPQ with weak coherent pulses,which solves a major obstacle in the practical application of the QPQ.展开更多
Optical chaos generated by perturbing semiconductor lasers has been viewed,over recent decades,as an excellent entropy source for fast physical random bit generation(RBG)owing to its high bandwidth and large random fl...Optical chaos generated by perturbing semiconductor lasers has been viewed,over recent decades,as an excellent entropy source for fast physical random bit generation(RBG)owing to its high bandwidth and large random fluctuations.However,most optical-chaos-based random bit generators perform their quantization process in the electrical domain using electrical analog-to-digital converters,so their real-time rates in a single channel are severely limited at the level of Gb/s due to the electronic bottleneck.Here,we propose and experimentally demonstrate an all-optical method for RBG where chaotic pulses are quantized into a physical random bit stream in the all-optical domain by means of a length of highly nonlinear fiber.In our proof-of-concept experiment,a 10-Gb/s random bit stream is successfully generated on-line using our method.Note that the single-channel real-time rate is limited only by the chaos bandwidth.Considering that the Kerr nonlinearity of silica fiber with an ultrafast response of few femtoseconds is exploited for composing the key part of quantizing laser chaos,this scheme thus may operate potentially at much higher real-time rates than 100 Gb/s provided that a chaotic entropy source of sufficient bandwidth is available.展开更多
The need to simultaneously balance security and fairness in quantum key agreement(QKA) makes it challenging to design a flawless QKA protocol, especially a multiparty quantum key agreement(MQKA) protocol. When designi...The need to simultaneously balance security and fairness in quantum key agreement(QKA) makes it challenging to design a flawless QKA protocol, especially a multiparty quantum key agreement(MQKA) protocol. When designing an MQKA protocol,two modes can be used to transmit the quantum information carriers: travelling mode and distributed mode. MQKA protocols usually have a higher qubit efficiency in travelling mode than in distributed mode. Thus, several travelling mode MQKA protocols have been proposed. However, almost all of these are vulnerable to collusion attacks from internal betrayers. This paper proposes an improved MQKA protocol that operates in travelling mode with Einstein-Podolsky-Rosen pairs. More importantly, we present a new travelling mode MQKA protocol that uses single photons, which is more feasible than previous methods under current technologies.展开更多
All-optical analog-to-digital conversion is a paramount issue in modern science. How to implement real-time and ultrafast quantization to optical pulses with different intensities in an all-optical domain is a central...All-optical analog-to-digital conversion is a paramount issue in modern science. How to implement real-time and ultrafast quantization to optical pulses with different intensities in an all-optical domain is a central problem. Here, we report a realtime demonstration of an all-optical quantization scheme based on slicing the supercontinuum in a nonlinear fiber. In comparison with previous schemes through off-line analysis of the power of different optical spectral components in the supercontinuum, this, to the best of our knowledge, is the first demonstration of such functionality online in the time domain.Moreover, the extinction ratio among the quantized outputs can exceed 10 d B, which further confirms the feasibility of the proposed quantization scheme. The current 3 bit resolution in the proof-of-principle experiment is limited by the current experimental condition, but it can be expected to be greatly enhanced through improving both the spectral width of the generated supercontinuum and the number of filtering channels used.展开更多
基金supported by a grant from the National Natural Science Foundation of China(51973195)Zhejiang Provincial Key Research and Development Program(2020C03042)“Ten Thousand Plan”-Zhejiang Provincial High Level Talents Special Support Plan(2020R52023).
文摘Excessive exudate at wound sites increases treatment difficulty and severely decelerates the healing process.In wound exu-date management,dressings with unidirectional liquid transport capability have exhibited enormous potential.However,it remains challenging to improve the one-way liquid transport efficiency.Herein,a trilayered fibrous dressing is constructed by sequentially electrospinning polyurethane(PU)and polyvinylidene fluoride(PVDF)onto cotton fabric.Through hot pressing,a stable wettability gradient is formed across the PVDF/PU/cotton dressing due to the melting and bridging of PU nanofib-ers.The trilayered dressing exhibited rapid unidirectional transport with water penetrating from the hydrophobic side to the hydrophilic side in 6 s.The hydrostatic pressure from the hydrophilic side to the hydrophobic side is 569%higher than that from the hydrophobic side to the hydrophilic side,indicating that the dressing has a profound unidirectional conductivity.In vivo experiments demonstrates that the trilayered dressing can accelerate the wound healing process,especially in the early stages of wound occurrence,by quickly draining the excessive exudate.This study provides a new method to construct wound dressings with wettability gradients,which are advantageous for efficient exudate removal.
基金supported by the National Natural Science Foundation of China(31630051)Natural Science Foundation of Jiangsu Province(BK20190524)the China Postdoctoral Science Foundation(2020M681633)。
文摘As the main byproduct of cotton production,cottonseed yields edible vegetable oil,ruminant feed,and industrial products.We evaluated the individual and interactive effects of elevated air temperature and soil drought on cottonseed yield and nutritional quality using two cotton cultivars,Sumian 15(heat-susceptible)and PHY370 WR(heat-tolerant).The experiment was conducted under three levels of soil relative water content(SRWC):(75±5)%,(60±5)%and(45±5)%and two temperature regimes:ambient temperature(AT,31.0/26.4℃,mean daytime/night temperature)and elevated temperature(ET,33.4/28.9℃).Cottonseed yield,boll number,seed number,and single-seed weight were lower under combined ET and SRWC(45±5)%than either individual stress or combined stresses in comparison with the control treatment(SRWC(75±5)%under AT).Drought tended to increase oil content and reduce protein content,whereas ET showed almost the opposite effects.Under the combination of ET and soil drought,oil content was still higher than under control,although ET weakened the beneficial effects of drought.For protein,ET offset the negative impacts of mild drought on protein content,but protein content was not increased under SRWC(45±5)%.Each stress or combined stress reduced oil and protein yields under all treatments,owing to declines in cottonseed yields.The combined stress reduced unsaturated fatty acid(UFA)/saturated fatty acid(SFA)and essential amino acid(EAA)/non-essential amino acid(NAA).Compared with PHY370 WR,the sensitivity of Sumian 15 to the combined factors was evidenced in the following ways:(1)seed yield,yield components,oil and protein yields were decreased more for Sumian 15 than PHY370 WR compared with the control treatment;(2)the combined stresses caused lower oil content,UFA,and UFA/SFA in Sumian 15 than PHY370 WR;(3)interaction effects of the combined factors on protein content and EAA/NAA were detected only in Sumian 15.
基金funded by the National Natural Science Foundation of China(Grant Nos.21767013 and 51741805)the Natural Science Foundation of Jiangxi Province(No.20151BA B213018).
文摘Ibuprofen(IBU)is widely used in the world as anti-inflammatory drug,which posed health risk to the environment.A bacterium capable of degrading IBU was isolated from activated sludge in a sewage treatment plant.According to its morphological,physiologic,and biochemical characteristics,as well as 16S rRNA sequence analysis,the strain was identified as Serratia marcescens BL1(BL1).Degradation of IBU required the presence of primary substrate.After a five-day cultivation with yeast powder at 30℃ and pH 7,the highest degradation(93.47%2.37%)was achieved.The process of BL1 degrading IBU followed first-order reaction kinetics.The BL1 strain was applied to a small biological aerated filter(BAF)device to form a biofilm with activated sludge.IBU removal by the BAF was consistent with the results of static tests.The removal of IBU was 32.01% to 44.04% higher than for a BAF without BL1.The indigenous bacterial community was able to effectively remove CODMn(permanganate index)and ammonia nitrogen in the presence of BL1.
基金supported by the National Natural Science Foundation of China(Grant Nos.62171418,U19A2076,61901425,and 61702061)Natural Science Foundation of Chongqing(Grant No.cstc2020jcyjmsxm X0719)+2 种基金National Science Key Lab Fund Project(Grant No.6142103200105)Fundamental Research Funds for the Central Universities(Grant Nos.2020CDJQY-A018,and 2020CDJ-LHZZ-056)Sichuan Science and Technology Program(Grant No.019JDJQ0060)。
文摘The quantum private query(QPQ)is a quantum solution for the symmetrically private information retrieval problem.We study the security of quantum-key-distribution-based QPQ with weak coherent pulses.The result shows that multiphoton pulses have posed a serious threat to the participant’s privacy in QPQ protocols.Then we propose a decoy-state method that can help the honest participant detect the attack by exploiting multiphoton pulses and improving the key distillation process to defend against such attack.The analysis demonstrates that our decoy-state method significantly improves the security of the QPQ with weak coherent pulses,which solves a major obstacle in the practical application of the QPQ.
基金the National Natural Science Foundation of China(62175177,U19A2076,61731014,61961136002,61927811,and 61805168)Natural Science Foundation of Shanxi Province(201901D211116,201901D211077)
文摘Optical chaos generated by perturbing semiconductor lasers has been viewed,over recent decades,as an excellent entropy source for fast physical random bit generation(RBG)owing to its high bandwidth and large random fluctuations.However,most optical-chaos-based random bit generators perform their quantization process in the electrical domain using electrical analog-to-digital converters,so their real-time rates in a single channel are severely limited at the level of Gb/s due to the electronic bottleneck.Here,we propose and experimentally demonstrate an all-optical method for RBG where chaotic pulses are quantized into a physical random bit stream in the all-optical domain by means of a length of highly nonlinear fiber.In our proof-of-concept experiment,a 10-Gb/s random bit stream is successfully generated on-line using our method.Note that the single-channel real-time rate is limited only by the chaos bandwidth.Considering that the Kerr nonlinearity of silica fiber with an ultrafast response of few femtoseconds is exploited for composing the key part of quantizing laser chaos,this scheme thus may operate potentially at much higher real-time rates than 100 Gb/s provided that a chaotic entropy source of sufficient bandwidth is available.
基金supported by the National Natural Science Foundation of China(Grant Nos.61501414,61602045,61601171,61309029,11504024 and 61502041)
文摘The need to simultaneously balance security and fairness in quantum key agreement(QKA) makes it challenging to design a flawless QKA protocol, especially a multiparty quantum key agreement(MQKA) protocol. When designing an MQKA protocol,two modes can be used to transmit the quantum information carriers: travelling mode and distributed mode. MQKA protocols usually have a higher qubit efficiency in travelling mode than in distributed mode. Thus, several travelling mode MQKA protocols have been proposed. However, almost all of these are vulnerable to collusion attacks from internal betrayers. This paper proposes an improved MQKA protocol that operates in travelling mode with Einstein-Podolsky-Rosen pairs. More importantly, we present a new travelling mode MQKA protocol that uses single photons, which is more feasible than previous methods under current technologies.
基金supported by the National Natural Science Foundation of China (NSFC) (Nos.61775158,61961136002,61927811,U19A2076,61705159,and 61805168)the National Cryptography Development Fund (No.MMJJ20170127)+4 种基金the China Postdoctoral Science Foundation (Nos.2018M630283 and 2019T120197)the Natural Science Foundation of Shanxi Province (No.201901D211116)STCSM (No.SKLSFO201803)the Project of Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics),the Ministry of Education (No.RIMP2019002)the Program for the Top Young Academic Leaders of High Learning Institutions of Shanxi。
文摘All-optical analog-to-digital conversion is a paramount issue in modern science. How to implement real-time and ultrafast quantization to optical pulses with different intensities in an all-optical domain is a central problem. Here, we report a realtime demonstration of an all-optical quantization scheme based on slicing the supercontinuum in a nonlinear fiber. In comparison with previous schemes through off-line analysis of the power of different optical spectral components in the supercontinuum, this, to the best of our knowledge, is the first demonstration of such functionality online in the time domain.Moreover, the extinction ratio among the quantized outputs can exceed 10 d B, which further confirms the feasibility of the proposed quantization scheme. The current 3 bit resolution in the proof-of-principle experiment is limited by the current experimental condition, but it can be expected to be greatly enhanced through improving both the spectral width of the generated supercontinuum and the number of filtering channels used.