Background:In recent years,online trolling has garnered significant attention due to its detrimental effects on mental health and social well-being.The current study examined the influence of peer victimization on ado...Background:In recent years,online trolling has garnered significant attention due to its detrimental effects on mental health and social well-being.The current study examined the influence of peer victimization on adolescent online trolling behavior,proposing that hostile attribution bias mediated this relationship and that trait mindfulness moderated both the direct and indirect effects.Methods:A total of 833 Chinese adolescents completed the measurements of peer victimization,hostile attribution bias,trait mindfulness,and online trolling.Moderated mediation analysis was performed to examine the relationships between these variables.Results:After controlling for gender and residential address,the study found a significant positive correlation between peer victimization and online trolling,with hostile attribution bias serving as a mediator.In addition,trait mindfulness moderated the direct relationship between peer victimization and online trolling.Specifically,the effect of peer victimization on online trolling was attenuated when adolescents had high levels of trait mindfulness.The results of the study emphasized the joint role of peer and personal factors in adolescents’online trolling behavior and provide certain strategies for intervening in adolescents’online trolling behavior.Conclusion:The results of the study suggest that strategies focusing on peer support and mindfulness training can have a positive impact on reducing online trolling behavior,promoting adolescents’mental health,and their long-term development.展开更多
Crown width(CW)is one of the most important tree metrics,but obtaining CW data is laborious and timeconsuming,particularly in natural forests.The Deep Learning(DL)algorithm has been proposed as an alternative to tradi...Crown width(CW)is one of the most important tree metrics,but obtaining CW data is laborious and timeconsuming,particularly in natural forests.The Deep Learning(DL)algorithm has been proposed as an alternative to traditional regression,but its performance in predicting CW in natural mixed forests is unclear.The aims of this study were to develop DL models for predicting tree CW of natural spruce-fir-broadleaf mixed forests in northeastern China,to analyse the contribution of tree size,tree species,site quality,stand structure,and competition to tree CW prediction,and to compare DL models with nonlinear mixed effects(NLME)models for their reliability.An amount of total 10,086 individual trees in 192 subplots were employed in this study.The results indicated that all deep neural network(DNN)models were free of overfitting and statistically stable within 10-fold cross-validation,and the best DNN model could explain 69%of the CW variation with no significant heteroskedasticity.In addition to diameter at breast height,stand structure,tree species,and competition showed significant effects on CW.The NLME model(R^(2)=0.63)outperformed the DNN model(R^(2)=0.54)in predicting CW when the six input variables were consistent,but the results were the opposite when the DNN model(R^(2)=0.69)included all 22 input variables.These results demonstrated the great potential of DL in tree CW prediction.展开更多
基金supported by the Sichuan Provincial Philosophy and Social Science Foundation Project(General Project)titled‘Research on the Influence Mechanism and Intervention of Mindfulness on Online Trolling among Adolescents’(Grant Number:SCJJ23ND227).
文摘Background:In recent years,online trolling has garnered significant attention due to its detrimental effects on mental health and social well-being.The current study examined the influence of peer victimization on adolescent online trolling behavior,proposing that hostile attribution bias mediated this relationship and that trait mindfulness moderated both the direct and indirect effects.Methods:A total of 833 Chinese adolescents completed the measurements of peer victimization,hostile attribution bias,trait mindfulness,and online trolling.Moderated mediation analysis was performed to examine the relationships between these variables.Results:After controlling for gender and residential address,the study found a significant positive correlation between peer victimization and online trolling,with hostile attribution bias serving as a mediator.In addition,trait mindfulness moderated the direct relationship between peer victimization and online trolling.Specifically,the effect of peer victimization on online trolling was attenuated when adolescents had high levels of trait mindfulness.The results of the study emphasized the joint role of peer and personal factors in adolescents’online trolling behavior and provide certain strategies for intervening in adolescents’online trolling behavior.Conclusion:The results of the study suggest that strategies focusing on peer support and mindfulness training can have a positive impact on reducing online trolling behavior,promoting adolescents’mental health,and their long-term development.
基金funded by National Natural Science Foundation of China(Grant No.31870623)National Key R&D Program of China(Grant No.2022YFD2200501).
文摘Crown width(CW)is one of the most important tree metrics,but obtaining CW data is laborious and timeconsuming,particularly in natural forests.The Deep Learning(DL)algorithm has been proposed as an alternative to traditional regression,but its performance in predicting CW in natural mixed forests is unclear.The aims of this study were to develop DL models for predicting tree CW of natural spruce-fir-broadleaf mixed forests in northeastern China,to analyse the contribution of tree size,tree species,site quality,stand structure,and competition to tree CW prediction,and to compare DL models with nonlinear mixed effects(NLME)models for their reliability.An amount of total 10,086 individual trees in 192 subplots were employed in this study.The results indicated that all deep neural network(DNN)models were free of overfitting and statistically stable within 10-fold cross-validation,and the best DNN model could explain 69%of the CW variation with no significant heteroskedasticity.In addition to diameter at breast height,stand structure,tree species,and competition showed significant effects on CW.The NLME model(R^(2)=0.63)outperformed the DNN model(R^(2)=0.54)in predicting CW when the six input variables were consistent,but the results were the opposite when the DNN model(R^(2)=0.69)included all 22 input variables.These results demonstrated the great potential of DL in tree CW prediction.