In the global progress of bone tumor research,established stable and long-lasting transgenic chondrosarcoma(CSA)cell lines are rare,mainly of murine and human origin,while the establishment of canine CSA cell lines ha...In the global progress of bone tumor research,established stable and long-lasting transgenic chondrosarcoma(CSA)cell lines are rare,mainly of murine and human origin,while the establishment of canine CSA cell lines has yet to be reported.This study established a canine CSA cell line to facilitate the basic clinical study of canine CSA.Fifty fve cases of canine osteolytic disease were collected,and more than 10 bone tumor samples from dogs with typical clinical signs were used for primary cell culture.A cell line with stable passaging for more than 100 generations and mouse tumorigenic ability was successfully cultured.According to the clinical characteristics of the dog and the histopathological results of the primary tumor,CSA was diagnosed,and the CSA cell line was designated Mango.Immunohistochemical(IHC)results showed that the immunoreactivity of bone gamma-carboxyglutamate protein(BGLAP),secreted protein acidic and rich in cysteine(SPARC),alkaline phosphatase(ALPL),vimentin(VIM)and S100 were positive.However,the immunoreactivity of pan-cytokeratin(PCK),chromogranin A(CGA),and platelet endothelial cell adhesion molecule-1(CD31)was negative.Immunofuorescence(IF)results showed that the protein expressions in the Mango cell line were consistent with the IHC identifcation of the primary tumor.The Mango cell line’s doubling time was 43.92 h,and the cell formation rate exceeded 20%.There were abnormal chromosome numbers,hetero staining with toluidine blue,and certain calcifcation abilities.It could be passaged stably and continuously without changing the cell morphology and characteristics.In vivo,the cells were successfully injected into the nude mice model with a tumorigenic rate of 100%.The immunophenotype of the xenograft tumor was consistent with that of the primary tumor.Therefore,we efectively established a canine CSA cell line.As a promising cell material,this cell line can be used to construct a tumor-bearing model conducive to the subsequent basic research of canine CSA.Moreover,because of its similarity to human CSA,the animal model of CSA is also indispensable for investigating human CSA.展开更多
The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with un...The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.展开更多
Existing technologies used to detect monosodium urate(MSU)crystals for gout diagnosis are not ideal due to their low sensitivity and complexity of operation.The purpose of this study was to explore whether aggregation...Existing technologies used to detect monosodium urate(MSU)crystals for gout diagnosis are not ideal due to their low sensitivity and complexity of operation.The purpose of this study was to explore whether aggregation-induced emission luminogens(AIEgens)can be used for highly specific imaging of MSU crystals to assist in the diagnosis of gout.First,we developed a series of luminogens(i.e.,tetraphenyl ethylene(TPE)-NH_(2),TPE-2NH_(2),TPE-4NH_(2),TPE-COOH,TPE-2COOH,TPE-4COOH,and TPE-Ketoalkyne),each of which was then evenly mixed with MSU crystals.Next,optimal fluorescence imaging of each of the luminogens was characterized by a confocal laser scanning microscope(CLSM).This approach was used for imaging standard samples of MSU,hydroxyapatite(HAP)crystals,and mixed samples with 1:1 mass ratio of MSU/HAP.We also imaged samples from mouse models of acute gouty arthritis,HAP deposition disease,and comorbidities of interest.Subsequently,CLSM imaging results were compared with those of compensated polarized light microscopy,and we assessed the biosafety of TPE-Ketoalkyne in the RAW264.7 cell line.Finally,CLSM time series and three-dimensional imaging were performed on MSU crystal samples from human gouty synovial fluid and tophi.As a promising candidate for MSU crystal labeling,TPE-Ketoalkyne was found to detect MSU crystals accurately and rapidly in standard samples,animal samples,and human samples,and could precisely distinguish gout from HAP deposition disease.This work demonstrates that TPE-Ketoalkyne is suitable for highly specific and timely imaging of MSU crystals in gouty arthritis and may facilitate future research on MSU crystal-related diseases.展开更多
Zn-air batteries(ZABs)as a class of promising energy storage setups are generally powered by efficient and robust catalysts at the oxygen-involving cathode.Although the existing non-noble catalysts have outperformed n...Zn-air batteries(ZABs)as a class of promising energy storage setups are generally powered by efficient and robust catalysts at the oxygen-involving cathode.Although the existing non-noble catalysts have outperformed noble Pt benchmark in the alkaline liquid-state ZABs,to the best of our knowledge few have excelled Pt in quasi-solid-state(QSS)ZABs.Herein,we found that an integrated Mn-Co cathode derived from the bimetallic Mn/Co metal organic frameworks generates a 1.4-fold greater power density in the QSS ZABs than a Pt cathode while its power density in liquid-state ZABs is only 0.8-fold of the latter.Moreover,such Mn-Co catalyst delivers high-rate oxygen reduction reaction(ORR)capability with half-wave potential of 0.84 V.The in-depth characterizations and analyses have demonstrated that the Co and Mn species show the specific affinity towards H_(2)O and O_(2),respectively,synergizing the ORR process in the water-deficient environment of QSS ZABs.This work has enlightened the rational design of non-noble metal catalysts to improve the power density of QSS ZABs.展开更多
Understanding the luminescence mechanisms and regulating the emission centers of carbon dots(CDs)are important for advancing their related applications.In this work,we systematically investigate the formation processe...Understanding the luminescence mechanisms and regulating the emission centers of carbon dots(CDs)are important for advancing their related applications.In this work,we systematically investigate the formation processes of multi-emission centers in CDs synthesized through a bottom-up approach by controlling the solvothermal reaction temperature.CDs synthesized at a lower temperature(140℃,140-CDs)exhibit smaller particle sizes(3–4 nm)with dominant green–yellow emission,while CDs synthesized at a higher temperature(180℃,180-CDs)exhibit larger particle sizes(8–9 nm)with enhanced red emission and emerging near-infrared(NIR)emission.The green–yellow emission and red emission originate from the core state and the surface-related state,respectively,and the emissions could be regulated by temperature-controlled dehydration and carbonization processes.The clear NIR emission center in 180-CDs is attributable to the increased content of radical defects in the cores during the increased dehydration and carbonization processes during higher-temperature solvothermal treatment.展开更多
Comprehensive Summary Carbon nanodots(CDs)with high photothermal performance are ideal candidates for tumor photothermal therapy(PTT).Herein,we investigated the photothermal performance of CDs synthesized from urea an...Comprehensive Summary Carbon nanodots(CDs)with high photothermal performance are ideal candidates for tumor photothermal therapy(PTT).Herein,we investigated the photothermal performance of CDs synthesized from urea and citric acid via solvothermal method in dimethyl sulfoxide(DMSO)at different temperatures.Photothermal conversion efficiency(PCE)of up to 61.3%was obtained in the CDs synthesized at 150℃(150-CDs),which is much better than the CDs synthesized at 180℃(180-CDs).By analyzing the morphologies,chemical structures,and absorption spectra of these CDs,we found that the photothermal effect of the CDs was due to the lattice vibration of their carbonized cores.展开更多
Carbon dots that exhibit near-infrared fluorescence(NIR CDs)are considered emerging nanomaterials for advanced biomedical applications with low toxicity and superior photostability and targeting compared to currently ...Carbon dots that exhibit near-infrared fluorescence(NIR CDs)are considered emerging nanomaterials for advanced biomedical applications with low toxicity and superior photostability and targeting compared to currently used photoluminescence agents.Despite progress in the synthesis of NIR CDs,there remains a key obstacle to using them as an in vivo theranostic agent.This work demonstrates that the newly developed sulfur and nitrogen codoped NIR CDs are highly efficient in photothermal therapy(PTT)in mouse models(conversion efficiency of 59%)and can be readily visualized by photoluminescence and photoacoustic imaging.The real theranostic potential of NIR CDs is enhanced by their unique biodistribution and targeting.Contrary to all other nanomaterials that have been tested in biomedicine,they are excreted through the body’s renal filtration system.Moreover,after intravenous injection,NIR CDs are accumulated in tumor tissue via passive targeting,without any active species such as antibodies.Due to their accumulation in tumor tissue without the need for intratumor injection,high photothermal conversion,excellent optical and photoacoustic imaging performance,and renal excretion,the developed CDs are suitable for transfer to clinical biomedical practice.展开更多
RNA polymerase transcriptional pausing represents a major checkpoint in transcription in bacteria and metazoans,but it is unknown whether this phenomenon occurs in plant organelles.Here,we report that transcriptional ...RNA polymerase transcriptional pausing represents a major checkpoint in transcription in bacteria and metazoans,but it is unknown whether this phenomenon occurs in plant organelles.Here,we report that transcriptional pausing occurs in chloroplasts.We found that mTERF5 specifically and positively regulates the transcription of chloroplast psbEFLJ in Arabidopsis thaliana that encodes four key subunits of photosystem II.We found that mTERF5 causes the plastid-encoded RNA polymerase(PEP)complex to pause at psbEFLJ by binding to the+30 to+51 region of double-stranded DNA.Moreover,we revealed that mTERF5 interacts with pTAC6,an essential subunit of the PEP complex,although pTAC6 is not involved in the transcriptional pausing at psbEFLJ.We showed that mTERF5 recruits additional pTAC6 to the transcriptionally paused region of psbEFLJ,and the recruited pTAC6 proteins could be assembled into the PEP complex to regulate psbEFLJ transcription.Taken together,our findings shed light on the role of transcriptional pausing in chloroplast transcription in plants.展开更多
Parasitic infections constitute a major global public health issue.Existing screening methods that are based on manual microscopic examination often struggle to provide sufficient volumetric throughput and sensitivity...Parasitic infections constitute a major global public health issue.Existing screening methods that are based on manual microscopic examination often struggle to provide sufficient volumetric throughput and sensitivity to facilitate early diagnosis.Here,we demonstrate a motility-based label-free computational imaging platform to rapidly detect motile parasites in optically dense bodily fluids by utilizing the locomotion of the parasites as a specific biomarker and endogenous contrast mechanism.Based on this principle,a cost-effective and mobile instrument,which rapidly screens~3.2 mL of fluid sample in three dimensions,was built to automatically detect and count motile microorganisms using their holographic time-lapse speckle patterns.We demonstrate the capabilities of our platform by detecting trypanosomes,which are motile protozoan parasites,with various species that cause deadly diseases affecting millions of people worldwide.Using a holographic speckle analysis algorithm combined with deep learningbased classification,we demonstrate sensitive and label-free detection of trypanosomes within spiked whole blood and artificial cerebrospinal fluid(CSF)samples,achieving a limit of detection of ten trypanosomes per mL of whole blood(~five-fold better than the current state-of-the-art parasitological method)and three trypanosomes per mL of CSF.We further demonstrate that this platform can be applied to detect other motile parasites by imaging Trichomonas vaginalis,the causative agent of trichomoniasis,which affects 275 million people worldwide.With its costeffective,portable design and rapid screening time,this unique platform has the potential to be applied for sensitive and timely diagnosis of neglected tropical diseases caused by motile parasites and other parasitic infections in resource-limited regions.展开更多
The combination of optogenetics and electrophysiological recording enables high-precision bidirectional interactions between neural interfaces and neural circuits,which provides a promising approach for the study of p...The combination of optogenetics and electrophysiological recording enables high-precision bidirectional interactions between neural interfaces and neural circuits,which provides a promising approach for the study of progressive neurophysiological phenomena.Opto-electrophysiological neural probes with sufficient flexibility and biocompatibility are desirable to match the low mechanical stiffness of brain tissue for chronic reliable performance.However,lack of rigidity poses challenges for the accurate implantation of flexible neural probes with less invasiveness.Herein,we report a hybrid probe(Silk-Optrode)consisting of a silk protein optical fiber and multiple flexible microelectrode arrays.The Silk-Optrode can be accurately inserted into the brain and perform synchronized optogenetic stimulation and multichannel recording in freely behaving animals.Silk plays an important role due to its high transparency,excellent biocompatibility,and mechanical controllability.Through the hydration of the silk optical fiber,the Silk-Optrode probe enables itself to actively adapt to the environment after implantation and reduce its own mechanical stiffness to implant into the brain with high fidelity while maintaining mechanical compliance with the surrounding tissue.The probes with 128 recording channels can detect high-yield well-isolated single units while performing intracranial light stimulation with low optical losses,surpassing previous work of a similar type.Two months of post-surgery results suggested that as-reported Silk-Optrode probes exhibit better implant-neural interfaces with less immunoreactive glial responses and tissue lesions.展开更多
Obesity is a complex,chronic disease and global public health challenge.Characterized by excessive fat accumulation in the body,obesity sharply increases the risk of several diseases,such as type 2 diabetes,cardiovasc...Obesity is a complex,chronic disease and global public health challenge.Characterized by excessive fat accumulation in the body,obesity sharply increases the risk of several diseases,such as type 2 diabetes,cardiovascular disease,and nonalcoholic fatty liver disease,and is linked to lower life expectancy.Although lifestyle intervention(diet and exercise)has remarkable effects on weight management,achieving long-term success at weight loss is extremely challenging,and the prevalence of obesity continues to rise worldwide.Over the past decades,the pathophysiology of obesity has been extensively investigated,and an increasing number of signal transduction pathways have been implicated in obesity,making it possible to fight obesity in a more effective and precise way.In this review,we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies,focusing on signaling pathways and their roles in the regulation of food intake,glucose homeostasis,adipogenesis,thermogenesis,and chronic inflammation.We also discuss the current antiobesity drugs,as well as weight loss compounds in clinical trials,that target these signals.The evolving knowledge of signaling transduction may shed light on the future direction of obesity research,as we move into a new era of precision medicine.展开更多
Metal-free room-temperature phosphorescence(RTP)materials are of great significance for many applications;however,they usually exhibit low efficiency and weak intensity.This article reports a new strategy for the prep...Metal-free room-temperature phosphorescence(RTP)materials are of great significance for many applications;however,they usually exhibit low efficiency and weak intensity.This article reports a new strategy for the preparation of a high-efficiency and strong RTP materials from crystalline thermal-annealed carbon dots(CDs)and boric acid(BA)composite(g-t-CD@BA)through grinding-induced amorphous to crystallization transition.Amorphous thermal-annealed CDs and BA composite(t-CD@BA)is prepared following a thermal melting and super-cooling route,where the CDs are fully dispersed in molten BA liquid and uniformly frozen in an amorphous thermal annealed BA matrix after super-cooling to room temperature.Upon grinding treatment,the fracture and fragmentation caused by grinding promote the transformation of the high-energy amorphous state to the lower energy crystalline counterparts.As a result,the CDs are uniformly in situ embedded in the BA crystal matrix.This method affords maximum uniform embedding of the CDs in the BA crystals,decreases nonradiative decay,and promotes intersystem crossing by restraining the free vibration of the CDs,thus producing strong RTP materials with the highest reported phosphorescence quantum yield(48%).Remarkably,RTP from g-t-CD@BA powder is strong enough to illuminate items with a delay time exceeding 9 s.展开更多
Using a fiber network as a huge sensing system will enrich monitoring methods of public infrastructures and geological disasters. With the traditional cross-correlation method, a laser interferometer has been used to ...Using a fiber network as a huge sensing system will enrich monitoring methods of public infrastructures and geological disasters. With the traditional cross-correlation method, a laser interferometer has been used to detect and localize the vibration event. However, the random error induced by the cross-correlation method limits the localization accuracy and makes it not suitable for ultrahigh precision localizing applications. We propose a novel time shifting deviation(TSDEV) method, which has advantages over the cross-correlation method in practicability and localization accuracy. Three experiments are carried out to demonstrate the novelty of the TSDEV method. In a lab test, vibration localization accuracy of;.5 m is realized. In field tests, TSDEV method enhanced interferometry is applied to monitor the urban fiber link. Traffic vibration events on the campus road and Beijing ring road have been precisely localized and analyzed, respectively. The proposed technique will extend the function of the existing urban fiber network, and better serve the future smart city.展开更多
The title in Ref.[1]originally reads as follows:Time shifting deviation method enhanced laser interferometry:ultrahigh precision localizing of traffic vibration using a urban fiber link The article"a"is corr...The title in Ref.[1]originally reads as follows:Time shifting deviation method enhanced laser interferometry:ultrahigh precision localizing of traffic vibration using a urban fiber link The article"a"is corrected as"an,"as shown at the beginning of this note.The article[1]was corrected online on 8 April2022.展开更多
基金the National Natural Science Foundation of China(Grant Number:32172925).
文摘In the global progress of bone tumor research,established stable and long-lasting transgenic chondrosarcoma(CSA)cell lines are rare,mainly of murine and human origin,while the establishment of canine CSA cell lines has yet to be reported.This study established a canine CSA cell line to facilitate the basic clinical study of canine CSA.Fifty fve cases of canine osteolytic disease were collected,and more than 10 bone tumor samples from dogs with typical clinical signs were used for primary cell culture.A cell line with stable passaging for more than 100 generations and mouse tumorigenic ability was successfully cultured.According to the clinical characteristics of the dog and the histopathological results of the primary tumor,CSA was diagnosed,and the CSA cell line was designated Mango.Immunohistochemical(IHC)results showed that the immunoreactivity of bone gamma-carboxyglutamate protein(BGLAP),secreted protein acidic and rich in cysteine(SPARC),alkaline phosphatase(ALPL),vimentin(VIM)and S100 were positive.However,the immunoreactivity of pan-cytokeratin(PCK),chromogranin A(CGA),and platelet endothelial cell adhesion molecule-1(CD31)was negative.Immunofuorescence(IF)results showed that the protein expressions in the Mango cell line were consistent with the IHC identifcation of the primary tumor.The Mango cell line’s doubling time was 43.92 h,and the cell formation rate exceeded 20%.There were abnormal chromosome numbers,hetero staining with toluidine blue,and certain calcifcation abilities.It could be passaged stably and continuously without changing the cell morphology and characteristics.In vivo,the cells were successfully injected into the nude mice model with a tumorigenic rate of 100%.The immunophenotype of the xenograft tumor was consistent with that of the primary tumor.Therefore,we efectively established a canine CSA cell line.As a promising cell material,this cell line can be used to construct a tumor-bearing model conducive to the subsequent basic research of canine CSA.Moreover,because of its similarity to human CSA,the animal model of CSA is also indispensable for investigating human CSA.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51901163 and 12104171)the Fundamental Research Funds for the Central Universities(Grant No.2021XXJS025).
文摘The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.
基金Thisworkwas supported by the Shanghai Science and Technology Committee(No.22dz1204700)the NationalKeyR&D Program of China(Nos.2020YFA0803800 and 2017YFE0132200)+2 种基金the National Natural Science Foundation of China(Nos.82072510,21907034,21788102,21525417,and 51620105009)the Natural Science Foundation of Guangdong Province(Nos.2019B030301003 and 2016A030312002)the Innovation and Technology Commission of Hong Kong(No.ITC-CNERC14S01).
文摘Existing technologies used to detect monosodium urate(MSU)crystals for gout diagnosis are not ideal due to their low sensitivity and complexity of operation.The purpose of this study was to explore whether aggregation-induced emission luminogens(AIEgens)can be used for highly specific imaging of MSU crystals to assist in the diagnosis of gout.First,we developed a series of luminogens(i.e.,tetraphenyl ethylene(TPE)-NH_(2),TPE-2NH_(2),TPE-4NH_(2),TPE-COOH,TPE-2COOH,TPE-4COOH,and TPE-Ketoalkyne),each of which was then evenly mixed with MSU crystals.Next,optimal fluorescence imaging of each of the luminogens was characterized by a confocal laser scanning microscope(CLSM).This approach was used for imaging standard samples of MSU,hydroxyapatite(HAP)crystals,and mixed samples with 1:1 mass ratio of MSU/HAP.We also imaged samples from mouse models of acute gouty arthritis,HAP deposition disease,and comorbidities of interest.Subsequently,CLSM imaging results were compared with those of compensated polarized light microscopy,and we assessed the biosafety of TPE-Ketoalkyne in the RAW264.7 cell line.Finally,CLSM time series and three-dimensional imaging were performed on MSU crystal samples from human gouty synovial fluid and tophi.As a promising candidate for MSU crystal labeling,TPE-Ketoalkyne was found to detect MSU crystals accurately and rapidly in standard samples,animal samples,and human samples,and could precisely distinguish gout from HAP deposition disease.This work demonstrates that TPE-Ketoalkyne is suitable for highly specific and timely imaging of MSU crystals in gouty arthritis and may facilitate future research on MSU crystal-related diseases.
基金support of the Fundamental Research Funds for the Central Universities(No.40120631)National Natural Science Foundation of China(No.52202291)for the support.
文摘Zn-air batteries(ZABs)as a class of promising energy storage setups are generally powered by efficient and robust catalysts at the oxygen-involving cathode.Although the existing non-noble catalysts have outperformed noble Pt benchmark in the alkaline liquid-state ZABs,to the best of our knowledge few have excelled Pt in quasi-solid-state(QSS)ZABs.Herein,we found that an integrated Mn-Co cathode derived from the bimetallic Mn/Co metal organic frameworks generates a 1.4-fold greater power density in the QSS ZABs than a Pt cathode while its power density in liquid-state ZABs is only 0.8-fold of the latter.Moreover,such Mn-Co catalyst delivers high-rate oxygen reduction reaction(ORR)capability with half-wave potential of 0.84 V.The in-depth characterizations and analyses have demonstrated that the Co and Mn species show the specific affinity towards H_(2)O and O_(2),respectively,synergizing the ORR process in the water-deficient environment of QSS ZABs.This work has enlightened the rational design of non-noble metal catalysts to improve the power density of QSS ZABs.
基金financially supported by the Science and Technology Development Fund of Macao SAR(Nos.0128/2020/A3,0131/2020/A3,0007/2021/AKP,006/2022/ALC and 0139/2022/A3)fund from the University of Macao(No.MYRG2020–00164-IAPME)+1 种基金the Research and Development Grant for Chair Professor Fund from the University of Macao(No.CPG2020–00026-IAPME)the Shenzhen-Hong Kong-Macao Science and Technology Innovation Project(Category C)(Nos.SGDX20210823103803021,EF029/IAPME-QSN/2022/SZSTIC)。
文摘Understanding the luminescence mechanisms and regulating the emission centers of carbon dots(CDs)are important for advancing their related applications.In this work,we systematically investigate the formation processes of multi-emission centers in CDs synthesized through a bottom-up approach by controlling the solvothermal reaction temperature.CDs synthesized at a lower temperature(140℃,140-CDs)exhibit smaller particle sizes(3–4 nm)with dominant green–yellow emission,while CDs synthesized at a higher temperature(180℃,180-CDs)exhibit larger particle sizes(8–9 nm)with enhanced red emission and emerging near-infrared(NIR)emission.The green–yellow emission and red emission originate from the core state and the surface-related state,respectively,and the emissions could be regulated by temperature-controlled dehydration and carbonization processes.The clear NIR emission center in 180-CDs is attributable to the increased content of radical defects in the cores during the increased dehydration and carbonization processes during higher-temperature solvothermal treatment.
基金the Science and Technology Development Fund of Macao SAR(0073/2019/AMJ,0128/2020/A3,0131/2020/A3,0007/2021/AKP and 006/2022/ALC)Fund from the University of Macao(MYRG2020-00164-IAPME)+1 种基金the Research and Development Grant for Chair Professor Fund from the University of Macao(CPG2020-00026-IAPME)the Shenzhen-Hong Kong-Macao Science and Technology Innovation Project(Category C)SGDX20210823103803021.
文摘Comprehensive Summary Carbon nanodots(CDs)with high photothermal performance are ideal candidates for tumor photothermal therapy(PTT).Herein,we investigated the photothermal performance of CDs synthesized from urea and citric acid via solvothermal method in dimethyl sulfoxide(DMSO)at different temperatures.Photothermal conversion efficiency(PCE)of up to 61.3%was obtained in the CDs synthesized at 150℃(150-CDs),which is much better than the CDs synthesized at 180℃(180-CDs).By analyzing the morphologies,chemical structures,and absorption spectra of these CDs,we found that the photothermal effect of the CDs was due to the lattice vibration of their carbonized cores.
基金supported by the National Natural Science Foundation of China(Project nos.51602304,91739117,81527024,61335001,and 81771930)the Youth Innovation Promotion Association of CAS+2 种基金the Jilin Province Science and Technology Research(Project nos.20170101191JC,20170101042JC,20160520008JH,and 20150519003JH)the Shenzhen Science and Technology Innovation Commission(Grant no.JCYJ20170307110157501)the support by the Operational Proqramme Research,Development and Education-European Reqional Development Fund,Project No.CZ.02.1.01/0.0/0.0/16-019/0000754 of the Ministry of Education,Youth and Sports of the Czech Republic and the assistance provided by the Research Infrastructure NanoEnviCz supported by the Ministry of Education,Youth and Sports of the Czech Republic under Project L01305 of the Ministry of Education,Youth and Sports of the Czech Republic.
文摘Carbon dots that exhibit near-infrared fluorescence(NIR CDs)are considered emerging nanomaterials for advanced biomedical applications with low toxicity and superior photostability and targeting compared to currently used photoluminescence agents.Despite progress in the synthesis of NIR CDs,there remains a key obstacle to using them as an in vivo theranostic agent.This work demonstrates that the newly developed sulfur and nitrogen codoped NIR CDs are highly efficient in photothermal therapy(PTT)in mouse models(conversion efficiency of 59%)and can be readily visualized by photoluminescence and photoacoustic imaging.The real theranostic potential of NIR CDs is enhanced by their unique biodistribution and targeting.Contrary to all other nanomaterials that have been tested in biomedicine,they are excreted through the body’s renal filtration system.Moreover,after intravenous injection,NIR CDs are accumulated in tumor tissue via passive targeting,without any active species such as antibodies.Due to their accumulation in tumor tissue without the need for intratumor injection,high photothermal conversion,excellent optical and photoacoustic imaging performance,and renal excretion,the developed CDs are suitable for transfer to clinical biomedical practice.
基金the National Natural Science Foundation of China(reference number 31730102)the State Key Basic Research and Development Plan of China(reference number 2015CB150105)+2 种基金the Key Research Plan of Frontier Sciences of the Chinese Academy of Sciences(reference number QYZDJ-SSW-SMC003)the Strategic Priority Research Program of the Chinese Academy of Sciences(reference number XDB17030100)the National Key Scientific Instrument and Equipment Development Project of China(grant no.2013YQ030595).
文摘RNA polymerase transcriptional pausing represents a major checkpoint in transcription in bacteria and metazoans,but it is unknown whether this phenomenon occurs in plant organelles.Here,we report that transcriptional pausing occurs in chloroplasts.We found that mTERF5 specifically and positively regulates the transcription of chloroplast psbEFLJ in Arabidopsis thaliana that encodes four key subunits of photosystem II.We found that mTERF5 causes the plastid-encoded RNA polymerase(PEP)complex to pause at psbEFLJ by binding to the+30 to+51 region of double-stranded DNA.Moreover,we revealed that mTERF5 interacts with pTAC6,an essential subunit of the PEP complex,although pTAC6 is not involved in the transcriptional pausing at psbEFLJ.We showed that mTERF5 recruits additional pTAC6 to the transcriptionally paused region of psbEFLJ,and the recruited pTAC6 proteins could be assembled into the PEP complex to regulate psbEFLJ transcription.Taken together,our findings shed light on the role of transcriptional pausing in chloroplast transcription in plants.
基金the support of the NSF Engineering Research Center(ERC,PATHS-UP)the ARO Life Sciences Division and the Howard Hughes Medical Institute(HHMI)supported by the US National Institutes of Health(NIH)grant AI052348。
文摘Parasitic infections constitute a major global public health issue.Existing screening methods that are based on manual microscopic examination often struggle to provide sufficient volumetric throughput and sensitivity to facilitate early diagnosis.Here,we demonstrate a motility-based label-free computational imaging platform to rapidly detect motile parasites in optically dense bodily fluids by utilizing the locomotion of the parasites as a specific biomarker and endogenous contrast mechanism.Based on this principle,a cost-effective and mobile instrument,which rapidly screens~3.2 mL of fluid sample in three dimensions,was built to automatically detect and count motile microorganisms using their holographic time-lapse speckle patterns.We demonstrate the capabilities of our platform by detecting trypanosomes,which are motile protozoan parasites,with various species that cause deadly diseases affecting millions of people worldwide.Using a holographic speckle analysis algorithm combined with deep learningbased classification,we demonstrate sensitive and label-free detection of trypanosomes within spiked whole blood and artificial cerebrospinal fluid(CSF)samples,achieving a limit of detection of ten trypanosomes per mL of whole blood(~five-fold better than the current state-of-the-art parasitological method)and three trypanosomes per mL of CSF.We further demonstrate that this platform can be applied to detect other motile parasites by imaging Trichomonas vaginalis,the causative agent of trichomoniasis,which affects 275 million people worldwide.With its costeffective,portable design and rapid screening time,this unique platform has the potential to be applied for sensitive and timely diagnosis of neglected tropical diseases caused by motile parasites and other parasitic infections in resource-limited regions.
基金partially supported by the National Key R&D Program of China(Grant Nos.2019YFA0905200,2021ZD0201600,2021YFC2501500,2021YFF1200700,2022ZD0209300,2022ZD0212300)National Natural Science Foundation of China(Grant No.61974154)+8 种基金Key Research Program of Frontier Sciences,CAS(Grant No.ZDBSLY-JSC024)Shanghai Pilot Program for Basic Research—Chinese Academy of Science,Shanghai Branch(Grant No.JCYJ-SHFY-2022-01)Shanghai Municipal Science and Technology Major Project(Grant No.2021SHZDZX)CAS Pioneer Hundred Talents Program,Shanghai Pujiang Program(Grant Nos.19PJ1410900,21PJ1415100)the Science and Technology Commission Foundation of Shanghai(No.21JM0010200)Shanghai Rising-Star Program(Grant No.22QA1410900)the Innovative Research Team of High-level Local Universities in Shanghai,the Jiangxi Province 03 Special Project and 5G Project(Grant No.20212ABC03W07)Fund for Central Government in Guidance of Local Science and Technology Development(Grant No.20201ZDE04013)Special Fund for Science and Technology Innovation Strategy of Guangdong Province(Grant Nos.2021B0909060002,2021B0909050004)。
文摘The combination of optogenetics and electrophysiological recording enables high-precision bidirectional interactions between neural interfaces and neural circuits,which provides a promising approach for the study of progressive neurophysiological phenomena.Opto-electrophysiological neural probes with sufficient flexibility and biocompatibility are desirable to match the low mechanical stiffness of brain tissue for chronic reliable performance.However,lack of rigidity poses challenges for the accurate implantation of flexible neural probes with less invasiveness.Herein,we report a hybrid probe(Silk-Optrode)consisting of a silk protein optical fiber and multiple flexible microelectrode arrays.The Silk-Optrode can be accurately inserted into the brain and perform synchronized optogenetic stimulation and multichannel recording in freely behaving animals.Silk plays an important role due to its high transparency,excellent biocompatibility,and mechanical controllability.Through the hydration of the silk optical fiber,the Silk-Optrode probe enables itself to actively adapt to the environment after implantation and reduce its own mechanical stiffness to implant into the brain with high fidelity while maintaining mechanical compliance with the surrounding tissue.The probes with 128 recording channels can detect high-yield well-isolated single units while performing intracranial light stimulation with low optical losses,surpassing previous work of a similar type.Two months of post-surgery results suggested that as-reported Silk-Optrode probes exhibit better implant-neural interfaces with less immunoreactive glial responses and tissue lesions.
基金This study was supported in part by grants from the Key Research and Development Program of Sichuan Province(22ZDYF2649 and 22ZDYF2138)the National Natural Science Foundation of China(81772079 and 81970715)the Innovation Spark Project of Sichuan University(2018SCUH0065).Figures within this paper were created with BioRender.com.
文摘Obesity is a complex,chronic disease and global public health challenge.Characterized by excessive fat accumulation in the body,obesity sharply increases the risk of several diseases,such as type 2 diabetes,cardiovascular disease,and nonalcoholic fatty liver disease,and is linked to lower life expectancy.Although lifestyle intervention(diet and exercise)has remarkable effects on weight management,achieving long-term success at weight loss is extremely challenging,and the prevalence of obesity continues to rise worldwide.Over the past decades,the pathophysiology of obesity has been extensively investigated,and an increasing number of signal transduction pathways have been implicated in obesity,making it possible to fight obesity in a more effective and precise way.In this review,we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies,focusing on signaling pathways and their roles in the regulation of food intake,glucose homeostasis,adipogenesis,thermogenesis,and chronic inflammation.We also discuss the current antiobesity drugs,as well as weight loss compounds in clinical trials,that target these signals.The evolving knowledge of signaling transduction may shed light on the future direction of obesity research,as we move into a new era of precision medicine.
基金the National Natural Science Foundation of China(No.52002152,62005106 and 61922091)the Natural Science Foundation of Jiangsu(BK20190864 and BK20190865)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions(19KJB430014)the Science and Technology Development Fund of Macao SAR(0040/2019/A1,0128/2020/A3,0131.2020.A3 and 0073/2019/AMJ)Fund from the University of Macao(SRG2019‐00163‐IAPME)the High-Tech Research Key Laboratory of Zhenjiang(SS2018002).
文摘Metal-free room-temperature phosphorescence(RTP)materials are of great significance for many applications;however,they usually exhibit low efficiency and weak intensity.This article reports a new strategy for the preparation of a high-efficiency and strong RTP materials from crystalline thermal-annealed carbon dots(CDs)and boric acid(BA)composite(g-t-CD@BA)through grinding-induced amorphous to crystallization transition.Amorphous thermal-annealed CDs and BA composite(t-CD@BA)is prepared following a thermal melting and super-cooling route,where the CDs are fully dispersed in molten BA liquid and uniformly frozen in an amorphous thermal annealed BA matrix after super-cooling to room temperature.Upon grinding treatment,the fracture and fragmentation caused by grinding promote the transformation of the high-energy amorphous state to the lower energy crystalline counterparts.As a result,the CDs are uniformly in situ embedded in the BA crystal matrix.This method affords maximum uniform embedding of the CDs in the BA crystals,decreases nonradiative decay,and promotes intersystem crossing by restraining the free vibration of the CDs,thus producing strong RTP materials with the highest reported phosphorescence quantum yield(48%).Remarkably,RTP from g-t-CD@BA powder is strong enough to illuminate items with a delay time exceeding 9 s.
基金National Natural Science Foundation of China(62171249,61971259,91836301)。
文摘Using a fiber network as a huge sensing system will enrich monitoring methods of public infrastructures and geological disasters. With the traditional cross-correlation method, a laser interferometer has been used to detect and localize the vibration event. However, the random error induced by the cross-correlation method limits the localization accuracy and makes it not suitable for ultrahigh precision localizing applications. We propose a novel time shifting deviation(TSDEV) method, which has advantages over the cross-correlation method in practicability and localization accuracy. Three experiments are carried out to demonstrate the novelty of the TSDEV method. In a lab test, vibration localization accuracy of;.5 m is realized. In field tests, TSDEV method enhanced interferometry is applied to monitor the urban fiber link. Traffic vibration events on the campus road and Beijing ring road have been precisely localized and analyzed, respectively. The proposed technique will extend the function of the existing urban fiber network, and better serve the future smart city.
文摘The title in Ref.[1]originally reads as follows:Time shifting deviation method enhanced laser interferometry:ultrahigh precision localizing of traffic vibration using a urban fiber link The article"a"is corrected as"an,"as shown at the beginning of this note.The article[1]was corrected online on 8 April2022.