In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number...In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.展开更多
Battery energy storage systems(BESSs)serve a crucial role in balancing energy fluctuations and reducing carbon emissions in net-zero power systems.However,the efficiency and cost performance have remained significant ...Battery energy storage systems(BESSs)serve a crucial role in balancing energy fluctuations and reducing carbon emissions in net-zero power systems.However,the efficiency and cost performance have remained significant challenges,which hinders the widespread adoption and development of BESSs.To address these challenges,this paper proposes a real-time energy management scheme that considers the involvement of prosumers to support net-zero power systems.The scheme is based on two shared energy storage models,referred to as energy storage sale model and power line lease model.The energy storage sale model balances real-time power deviations by energy interaction with the goal of minimizing system costs while generating revenue for shared energy storage providers(ESPs).Additionally,power line lease model supports peer-to-peer(P2P)power trading among prosumers through the power lines laid by ESPs to connect each prosumer.This model allows ESP to earn profits from the use of power lines while balancing power deviations and better consuming renewable energy.Experimental results validate the effectiveness of the proposed scheme,ensuring stable power supply for net-zero power systems and providing benefits for both the ESP and prosumers.展开更多
基金supported in part by the National Key Research and Development Program of China(2018YFA0702200)the National Natural Science Foundation of China(52377079,62203097,62373196)。
文摘In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.
基金supported by National Natural Science Foundation of China(61433004,61603085)the China Postdoctoral Science Foundation(2015M570253)the Fundamental Research Funds for the Central Universities(N150403004)
基金supported in part by the National Key Research and Development Program of China(No.2018YFA0702200)the National Natural Science Foundation of China(No.52377079)the Liaoning Revitalization Talents Program(No.XLYC2007181)。
文摘Battery energy storage systems(BESSs)serve a crucial role in balancing energy fluctuations and reducing carbon emissions in net-zero power systems.However,the efficiency and cost performance have remained significant challenges,which hinders the widespread adoption and development of BESSs.To address these challenges,this paper proposes a real-time energy management scheme that considers the involvement of prosumers to support net-zero power systems.The scheme is based on two shared energy storage models,referred to as energy storage sale model and power line lease model.The energy storage sale model balances real-time power deviations by energy interaction with the goal of minimizing system costs while generating revenue for shared energy storage providers(ESPs).Additionally,power line lease model supports peer-to-peer(P2P)power trading among prosumers through the power lines laid by ESPs to connect each prosumer.This model allows ESP to earn profits from the use of power lines while balancing power deviations and better consuming renewable energy.Experimental results validate the effectiveness of the proposed scheme,ensuring stable power supply for net-zero power systems and providing benefits for both the ESP and prosumers.