To promote the development of timber-concrete composite(TCC)structures,it is necessary to propose the assembly-type connections with high assembly efficiency and shear performances.This article presented the experimen...To promote the development of timber-concrete composite(TCC)structures,it is necessary to propose the assembly-type connections with high assembly efficiency and shear performances.This article presented the experimental results of the innovative steel-plate connections for TCC beams using prefabricated concrete slabs.The steel-plate connections consisted of the screws and the steel-plates.The steel-plates were partly embedded in the concrete slabs.The concrete slabs and the timber beams were connected by screws through the steel-plates.The parameters researched in this article included screw number,angle steel as the reinforcement for anchoring,and shallow notches on the timber surface to restrict the slip of the steel-plates.Experimental results were discussed in terms of failure modes,ultimate bearing capacities,and slip moduli.It was found that increasing the number of screws could lead to the obvious improvement on the ultimate bearing capacities and the slip moduli at the ultimate state;and the angle steel as the reinforcement showed the slight influence on the ultimate bearing capacities and the slip moduli.The application of the shallow notch can greatly improve the ultimate bearing capacities and the slip moduli.The calculation models for the ultimate bearing capacities and the slip moduli of the steel-plate connections with and without shallow notches were proposed,which showed good accuracy compared with the experimental results.展开更多
In aquaculture,high-density seaweed farming brings higher economic benefits but also increases outbreaks of diatom felt.The effective control of diatom felt in high-density seaweed farming has always been a research h...In aquaculture,high-density seaweed farming brings higher economic benefits but also increases outbreaks of diatom felt.The effective control of diatom felt in high-density seaweed farming has always been a research hotspot.This study selected two potential allelochemicals 2-hydroxycinnamic acid and quinic acid to explore their effects on a diatom Nitzschia closterium and an economic seaweed Monostroma nitidum.The results showed that 2-hydroxycinnamic acid had better inhibitory effects than quinic acid on the growth,pigment content and photosynthetic efficiency of N.closterium.Their half-maximal inhibitory concentrations at 120 h(IC_(50–120 h))were 0.9000 and 1.278 mM,respectively.Additionally,these allelochemicals had limited inhibitory effects on the growth,pigment content and photosynthetic efficiency of M.nitidum before 24 h.To further explore the allelopathic effect of these chemicals,this study focused on the photosystem II energy fluxes of N.closterium.It was found that 3 mM 2-hydroxycinnamic acid could destroy the whole photosynthetic system by devastating the PSII reaction centre(RC)before 24 h;however,the same concentration of quinic acid could only down-regulate the electron transport efficiency by changing the effective antenna size of an active RC and downregulating the PSII reaction centre density.These experimental results are expected to provide a new strategy to control diatom felt blooms on the high-density seaweed farming areas.展开更多
Nickel molybdate(NiMoO_(4))attracts superior hydrogen desorption behavior but noticeably poor for efficiently driving the hydrogen evolution reaction(HER)in alkaline media due to the sluggish water dissociation step.H...Nickel molybdate(NiMoO_(4))attracts superior hydrogen desorption behavior but noticeably poor for efficiently driving the hydrogen evolution reaction(HER)in alkaline media due to the sluggish water dissociation step.Herein,we successfully accelerate the water dissociation kinetics of NiMoO_(4)for prominent HER catalytic properties via simultaneous in situ interfacial engineering with molybdenum dioxide(MoO_(2))and doping with phosphorus(P).The as-synthesized P-doped NiMoO_(4)/MoO_(2)heterostructure nanorods exhibit outstanding HER performance with an extraordinary low overpotential of-23 m V at a current density of 10 m A cm^(-2),which is highly comparable to the performance of the state-of-art Pt/C coated on nickel foam(NF)catalyst.The density functional theory(DFT)analysis reveals the enhanced performance is attributed to the formation of MoO_(2)during the in situ epitaxial growth that substantially reduces the energy barrier of the Volmer pathway,and the introduction of P that provides efficient hydrogen desorption of Ni MoO_(2).This present work creates valuable insight into the utilization of interfacial and doping systems for hydrogen evolution catalysis and beyond.展开更多
Bismuth telluride(Bi_(2)Te_(3))has attracted much attention in the field of thermoelectrics since it is one kind of commercial room-temperature thermoelectric material.Herein three kinds of Bi_(2)Te_(3) thermoelectric...Bismuth telluride(Bi_(2)Te_(3))has attracted much attention in the field of thermoelectrics since it is one kind of commercial room-temperature thermoelectric material.Herein three kinds of Bi_(2)Te_(3) thermoelectric fibers with internal tensile stress are fabricated utilizing an optical fiber template method.The effects of internal stress on the microstructure and the electrical transportation of Bi_(2)Te_(3) thermoelectric fibers are investigated.The Bi_(2)Te_(3) cores in the fibers are highly crystalline and possess a tensile nanosheet structure with preferential orientation as evidenced by X-ray diffraction and Raman studies.Tensile stress can enhance electrical properties of the fibers.And a paper cup generator covered with 20 pieces of optimized fibers provides a μW-level output power.It is inferred that tensile stress tuning can be an effective tool for the material optimization of thermoelectric performance.展开更多
基金sponsored by the National Natural Science Foundation of China(Grant No.51878344)the Postdoctoral Foundation of Jiangsu Province(Grant No.2021K128B).
文摘To promote the development of timber-concrete composite(TCC)structures,it is necessary to propose the assembly-type connections with high assembly efficiency and shear performances.This article presented the experimental results of the innovative steel-plate connections for TCC beams using prefabricated concrete slabs.The steel-plate connections consisted of the screws and the steel-plates.The steel-plates were partly embedded in the concrete slabs.The concrete slabs and the timber beams were connected by screws through the steel-plates.The parameters researched in this article included screw number,angle steel as the reinforcement for anchoring,and shallow notches on the timber surface to restrict the slip of the steel-plates.Experimental results were discussed in terms of failure modes,ultimate bearing capacities,and slip moduli.It was found that increasing the number of screws could lead to the obvious improvement on the ultimate bearing capacities and the slip moduli at the ultimate state;and the angle steel as the reinforcement showed the slight influence on the ultimate bearing capacities and the slip moduli.The application of the shallow notch can greatly improve the ultimate bearing capacities and the slip moduli.The calculation models for the ultimate bearing capacities and the slip moduli of the steel-plate connections with and without shallow notches were proposed,which showed good accuracy compared with the experimental results.
基金sponsored by the Ph.D.Start-Up Foundation of Guangdong Ocean University(R19049)Science and Technology Planning Project of Guangdong(2017A030303078)Undergraduate Start-Up Foundation of Guangdong Ocean University(580520135 and 570119011).
文摘In aquaculture,high-density seaweed farming brings higher economic benefits but also increases outbreaks of diatom felt.The effective control of diatom felt in high-density seaweed farming has always been a research hotspot.This study selected two potential allelochemicals 2-hydroxycinnamic acid and quinic acid to explore their effects on a diatom Nitzschia closterium and an economic seaweed Monostroma nitidum.The results showed that 2-hydroxycinnamic acid had better inhibitory effects than quinic acid on the growth,pigment content and photosynthetic efficiency of N.closterium.Their half-maximal inhibitory concentrations at 120 h(IC_(50–120 h))were 0.9000 and 1.278 mM,respectively.Additionally,these allelochemicals had limited inhibitory effects on the growth,pigment content and photosynthetic efficiency of M.nitidum before 24 h.To further explore the allelopathic effect of these chemicals,this study focused on the photosystem II energy fluxes of N.closterium.It was found that 3 mM 2-hydroxycinnamic acid could destroy the whole photosynthetic system by devastating the PSII reaction centre(RC)before 24 h;however,the same concentration of quinic acid could only down-regulate the electron transport efficiency by changing the effective antenna size of an active RC and downregulating the PSII reaction centre density.These experimental results are expected to provide a new strategy to control diatom felt blooms on the high-density seaweed farming areas.
基金supported by the National Natural Science Foundation of China(21875292 and 51902103)Hunan Provincial Natural Science Foundation(2019JJ50037 and 2021JJ30087)+1 种基金Natural Science Foundation of Guangdong Province(2020A1515010798)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007)。
文摘Nickel molybdate(NiMoO_(4))attracts superior hydrogen desorption behavior but noticeably poor for efficiently driving the hydrogen evolution reaction(HER)in alkaline media due to the sluggish water dissociation step.Herein,we successfully accelerate the water dissociation kinetics of NiMoO_(4)for prominent HER catalytic properties via simultaneous in situ interfacial engineering with molybdenum dioxide(MoO_(2))and doping with phosphorus(P).The as-synthesized P-doped NiMoO_(4)/MoO_(2)heterostructure nanorods exhibit outstanding HER performance with an extraordinary low overpotential of-23 m V at a current density of 10 m A cm^(-2),which is highly comparable to the performance of the state-of-art Pt/C coated on nickel foam(NF)catalyst.The density functional theory(DFT)analysis reveals the enhanced performance is attributed to the formation of MoO_(2)during the in situ epitaxial growth that substantially reduces the energy barrier of the Volmer pathway,and the introduction of P that provides efficient hydrogen desorption of Ni MoO_(2).This present work creates valuable insight into the utilization of interfacial and doping systems for hydrogen evolution catalysis and beyond.
基金supported by Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01X137)National Key Research and Development Program of China(2016YFB0402204)+2 种基金China Postdoctoral Science Foundation(2018M640777)Fundamental Research Funds for Central Universities(D2160590)National Natural Science Foundation of China(U1601205).
文摘Bismuth telluride(Bi_(2)Te_(3))has attracted much attention in the field of thermoelectrics since it is one kind of commercial room-temperature thermoelectric material.Herein three kinds of Bi_(2)Te_(3) thermoelectric fibers with internal tensile stress are fabricated utilizing an optical fiber template method.The effects of internal stress on the microstructure and the electrical transportation of Bi_(2)Te_(3) thermoelectric fibers are investigated.The Bi_(2)Te_(3) cores in the fibers are highly crystalline and possess a tensile nanosheet structure with preferential orientation as evidenced by X-ray diffraction and Raman studies.Tensile stress can enhance electrical properties of the fibers.And a paper cup generator covered with 20 pieces of optimized fibers provides a μW-level output power.It is inferred that tensile stress tuning can be an effective tool for the material optimization of thermoelectric performance.