The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is ...The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is verified against surface rain-gauge observations. The observed morning precipitation peak on the windward(relative to the prevailing synoptic-scale wind) side of the DBM is reproduced with good spatial and temporal accuracy. The interaction between the DBM and a nocturnal boundary layer low-level jet(BLJ) due to the inertial oscillation mechanism is shown to be responsible for this precipitation peak. The BLJ is aligned with the lower-level southwesterly synoptic-scale flow that carries abundant moisture.The BLJ core is established at around 0200 LST upwind of the mountains. It moves towards the DBM and reaches maximum intensity at about 70 km ahead of the mountains. When the BLJ impinges upon the windward side of the DBM in the early morning, mechanical lifting of moist air leads to condensation and subsequent precipitation.展开更多
This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and wind...This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational (4DVAR) data assimilation system. A squall-line case observed during a field campaign is selected to investigate the performance of the technique. A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions. The surface-based cold pool, divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation. Three experiments--assimilating radar data only, assimilating radar data with surface data blended in a mesoscale background, and assimilating both radar and surface observations with a 4DVAR cost function--are conducted to examine the impact of the surface data assimilation. Independent surface and wind profiler observations are used for verification. The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations. It is also shown that the additional surface data can help improve the analysis and forecast at low levels. Surface and low-level features of the squall line-- including the surface warm inflow, cold pool, gust front, and low-level wind--are much closer to the observations after assimilating the surface data in VDRAS.展开更多
As water scarcity is becoming a growing threat to human development, finding effective solutions has become an urgent need. To make better use of water resources, seawater desalination and storage systems using renewa...As water scarcity is becoming a growing threat to human development, finding effective solutions has become an urgent need. To make better use of water resources, seawater desalination and storage systems using renewable energy sources(RES) are designed and implemented around the world. In this paper, an optimal capacity planning method for RES-pumped storage-seawater desalination(RES-PS-D) system is introduced. The configuration of the RES-PS-D system is clarified first, after which a cost-benefit analysis is performed using all cost and benefit components. A function for determining maximum economic benefits of the RES-PS-D system is then established, and the constraints are proposed based on various limitations. The mixed-integer linear programming algorithm is applied to solve the optimal function. A case study is introduced to validate the feasibility and effectiveness of the method. The conclusion shows that the strategy is suitable for solving the configuration optimization problem, and finally both merits and defects of the method are discussed.展开更多
The single crystal of cubic perovskite BaFeO3 shows multiple magnetic transitions and external stimulus sensitive magnetism.In this paper,a 5%-Co-doped BaFeO_(3)(i.e.BaFe_(0.95)Co_(0.05)O_(3))single crystal was grown ...The single crystal of cubic perovskite BaFeO3 shows multiple magnetic transitions and external stimulus sensitive magnetism.In this paper,a 5%-Co-doped BaFeO_(3)(i.e.BaFe_(0.95)Co_(0.05)O_(3))single crystal was grown by combining floating zone methods with high-pressure techniques.Such a slight Co doping has little effect on crystal structure,but significantly changes the magnetism from the parent antiferromagnetic ground state to a ferromagnetic one with the Curie temperature TC≈120 K.Compared with the parent BaFeO3 at the induced ferromagnetic state,the saturated magnetic moment of the doped BaFe_(0.95)Co_(0.05)O_(3) increases by about 10%and reaches 3.64μB/f.u.Resistivity and specific heat measurements show that the ferromagnetic ordering favors metallic-like electrical transport behavior for BaFe_(0.95)Co_(0.05)O_(3).The present work indicates that Co-doping is an effective method to tune the magnetic and electric properties for the cubic perovskite phase of BaFeO_(3).展开更多
Dear Editor,In this letter, a distributed self-consistent control method to coordinate low-carbon transportation and energy is proposed to address the efficient utilization of regional transportation energy and renewa...Dear Editor,In this letter, a distributed self-consistent control method to coordinate low-carbon transportation and energy is proposed to address the efficient utilization of regional transportation energy and renewable energy. Specifically, taking into account the coordinated development of transportation, power grids, and renewable energy, transportation energy self-consistent, including instant self-consistent rate and power self-consistent rate。展开更多
In this paper,a novel multi-objective optimization model of integrated energy systems(IESs)is proposed based on the ladder-type carbon emission trading mechanism and refined load demand response strategies.First,the c...In this paper,a novel multi-objective optimization model of integrated energy systems(IESs)is proposed based on the ladder-type carbon emission trading mechanism and refined load demand response strategies.First,the carbon emission trading mechanism is introduced into the optimal scheduling of IESs,and a ladder-type carbon emission cost calculation model based on rewards and penalties is established to strictly control the carbon emissions of the system.Then,according to different response characteristics of electric load and heating load,a refined load demand response model is built based on the price elasticity matrix and substitutability of energy supply mode.On these basis,a multi-objective optimization model of IESs is established,which aims to minimize the total operating cost and the renewable energy source(RES)curtailment.Finally,based on typical case studies,the simulation results show that the proposed model can effectively improve the economic benefits of IESs and the utilization efficiency of RESs.展开更多
With the gradual increase of distributed energy penetration,the traditional optimization model of distribution network can no longer guarantee the stable and efficient operation of the distribution network.In order to...With the gradual increase of distributed energy penetration,the traditional optimization model of distribution network can no longer guarantee the stable and efficient operation of the distribution network.In order to deal with the inevitable uncertainty of distributed energy,a new robust optimal operation method is proposed for active distribution network(ADN)based on the minimum confidence interval of distributed energy Beta distribution in this paper.First,an ADN model is established with second-order cone to include the energy storage device,capacitor bank,static var compensator,on-load tap changer,wind turbine and photovoltaic.Then,the historical data of related distributed energy are analyzed and described by the probability density function,and the minimum confidence interval is obtained by interval searching.Furthermore,via taking this minimum confidence interval as the uncertain interval,a less conservative two-stage robust optimization model is established and solved for ADN.The simulation results for the IEEE33-bus distribution network have verified that the proposed method can realize a more stable and efficient operation of the distribution network compared with the traditional robust optimization method.展开更多
At kilometer and sub-kilometer resolutions,known as the numerical gray zone for boundary layer turbulence,the atmospheric boundary layer turbulence becomes partially resolved and partially subgrid-scale(SGS) in a nume...At kilometer and sub-kilometer resolutions,known as the numerical gray zone for boundary layer turbulence,the atmospheric boundary layer turbulence becomes partially resolved and partially subgrid-scale(SGS) in a numerical model,thus requiring scale-adaptive turbulence schemes.Such schemes are often built by modifying the existing parameterizations,either the planetary boundary layer(PBL) schemes or the large-eddy simulation(LES) closures,to produce the right SGS turbulent fluxes at gray zone resolutions.However,the underlying forcings responsible for the changes in the vertical turbulent fluxes are largely ignored in these approaches.This study follows the original approach of Wyngaard(2004) and analyzes the turbulent buoyancy and momentum flux budgets,to gain a better understanding of the variations of flux forcings at gray zone resolutions.The investigation focuses on the pressure covariance term,which is one of the most dominant terms in the budget equations.By using the coarse-grained LES of a dry convective boundary layer(CBL) case as reference,two widely-used pressure covariance models are evaluated and optimized across the gray zone resolution range.The optimized linear model is further evaluated a priori against another dry CBL case with a different bulk stability,and a shallow-cumulus-topped boundary layer case.The model applies well to both cases,and notably shows good performance for the cloud layer.Based on the analysis of the flux forcings and the optimized pressure model,a scale-adaptive turbulence model for the gray zone is derived from the steady-state flux budgets.展开更多
基金supported by the Special Foundation of the China Meteorological Administration (Grant No.GYHY201506006)supported by the National Science Foundation of China (Grant Nos.41405100,41322032 and 41275031)
文摘The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is verified against surface rain-gauge observations. The observed morning precipitation peak on the windward(relative to the prevailing synoptic-scale wind) side of the DBM is reproduced with good spatial and temporal accuracy. The interaction between the DBM and a nocturnal boundary layer low-level jet(BLJ) due to the inertial oscillation mechanism is shown to be responsible for this precipitation peak. The BLJ is aligned with the lower-level southwesterly synoptic-scale flow that carries abundant moisture.The BLJ core is established at around 0200 LST upwind of the mountains. It moves towards the DBM and reaches maximum intensity at about 70 km ahead of the mountains. When the BLJ impinges upon the windward side of the DBM in the early morning, mechanical lifting of moist air leads to condensation and subsequent precipitation.
基金primarily supported by the National Fundamental Research 973 Program of China(Grant No.2013CB430101)the National Natural Science Foundation of China(Grant Nos.41275031,41322032 and 41475015)+1 种基金the Social Commonwealth Research Program(Grant Nos.GYHY201506004 and GYHY201006007)the Program for New Century Excellent Talents in Universities of China
文摘This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational (4DVAR) data assimilation system. A squall-line case observed during a field campaign is selected to investigate the performance of the technique. A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions. The surface-based cold pool, divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation. Three experiments--assimilating radar data only, assimilating radar data with surface data blended in a mesoscale background, and assimilating both radar and surface observations with a 4DVAR cost function--are conducted to examine the impact of the surface data assimilation. Independent surface and wind profiler observations are used for verification. The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations. It is also shown that the additional surface data can help improve the analysis and forecast at low levels. Surface and low-level features of the squall line-- including the surface warm inflow, cold pool, gust front, and low-level wind--are much closer to the observations after assimilating the surface data in VDRAS.
基金supported by the National Natural Science Foundation of China (No.61703081)the Natural Science Foundation of Liaoning Province (No.20170520113)the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (No.LAPS19005)
文摘As water scarcity is becoming a growing threat to human development, finding effective solutions has become an urgent need. To make better use of water resources, seawater desalination and storage systems using renewable energy sources(RES) are designed and implemented around the world. In this paper, an optimal capacity planning method for RES-pumped storage-seawater desalination(RES-PS-D) system is introduced. The configuration of the RES-PS-D system is clarified first, after which a cost-benefit analysis is performed using all cost and benefit components. A function for determining maximum economic benefits of the RES-PS-D system is then established, and the constraints are proposed based on various limitations. The mixed-integer linear programming algorithm is applied to solve the optimal function. A case study is introduced to validate the feasibility and effectiveness of the method. The conclusion shows that the strategy is suitable for solving the configuration optimization problem, and finally both merits and defects of the method are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934017 and 11921004)the National Key Research and Development Program of China(Grant Nos.2021YFA1400300,2018YFE0103200,and 2018YFA0305700)+1 种基金the Beijing Natural Science Foundation(Grant No.Z200007)the Fund from the Chinese Academy of Sciences(Grant No.XDB33000000).
文摘The single crystal of cubic perovskite BaFeO3 shows multiple magnetic transitions and external stimulus sensitive magnetism.In this paper,a 5%-Co-doped BaFeO_(3)(i.e.BaFe_(0.95)Co_(0.05)O_(3))single crystal was grown by combining floating zone methods with high-pressure techniques.Such a slight Co doping has little effect on crystal structure,but significantly changes the magnetism from the parent antiferromagnetic ground state to a ferromagnetic one with the Curie temperature TC≈120 K.Compared with the parent BaFeO3 at the induced ferromagnetic state,the saturated magnetic moment of the doped BaFe_(0.95)Co_(0.05)O_(3) increases by about 10%and reaches 3.64μB/f.u.Resistivity and specific heat measurements show that the ferromagnetic ordering favors metallic-like electrical transport behavior for BaFe_(0.95)Co_(0.05)O_(3).The present work indicates that Co-doping is an effective method to tune the magnetic and electric properties for the cubic perovskite phase of BaFeO_(3).
基金supported by the National Natural Science Foundation of China(U1908217,61703081)。
文摘Dear Editor,In this letter, a distributed self-consistent control method to coordinate low-carbon transportation and energy is proposed to address the efficient utilization of regional transportation energy and renewable energy. Specifically, taking into account the coordinated development of transportation, power grids, and renewable energy, transportation energy self-consistent, including instant self-consistent rate and power self-consistent rate。
基金supported by the Science and Technology Project of State Grid Corporation of China“Key Technologies and Application of Distributed Swarm Intelligent Collaborative Control and Optimization for Energy Internet”(No.52100220002B)。
文摘In this paper,a novel multi-objective optimization model of integrated energy systems(IESs)is proposed based on the ladder-type carbon emission trading mechanism and refined load demand response strategies.First,the carbon emission trading mechanism is introduced into the optimal scheduling of IESs,and a ladder-type carbon emission cost calculation model based on rewards and penalties is established to strictly control the carbon emissions of the system.Then,according to different response characteristics of electric load and heating load,a refined load demand response model is built based on the price elasticity matrix and substitutability of energy supply mode.On these basis,a multi-objective optimization model of IESs is established,which aims to minimize the total operating cost and the renewable energy source(RES)curtailment.Finally,based on typical case studies,the simulation results show that the proposed model can effectively improve the economic benefits of IESs and the utilization efficiency of RESs.
基金supported in part by the National Natural Science Foundation of China(No.61703081)the Liaoning Joint Fund of National Natural Science Foundation of China(No.U1908217)+1 种基金the Natural Science Foundation of Liaoning Province(No.20170520113)the Fundamental Research Funds for the Central Universities(No.N2004016)。
文摘With the gradual increase of distributed energy penetration,the traditional optimization model of distribution network can no longer guarantee the stable and efficient operation of the distribution network.In order to deal with the inevitable uncertainty of distributed energy,a new robust optimal operation method is proposed for active distribution network(ADN)based on the minimum confidence interval of distributed energy Beta distribution in this paper.First,an ADN model is established with second-order cone to include the energy storage device,capacitor bank,static var compensator,on-load tap changer,wind turbine and photovoltaic.Then,the historical data of related distributed energy are analyzed and described by the probability density function,and the minimum confidence interval is obtained by interval searching.Furthermore,via taking this minimum confidence interval as the uncertain interval,a less conservative two-stage robust optimization model is established and solved for ADN.The simulation results for the IEEE33-bus distribution network have verified that the proposed method can realize a more stable and efficient operation of the distribution network compared with the traditional robust optimization method.
基金Supported by the Joint Funds of the National Natural Science Foundation of China (U2142209)Major Program of the National Natural Science Foundation of China (42192552)。
文摘At kilometer and sub-kilometer resolutions,known as the numerical gray zone for boundary layer turbulence,the atmospheric boundary layer turbulence becomes partially resolved and partially subgrid-scale(SGS) in a numerical model,thus requiring scale-adaptive turbulence schemes.Such schemes are often built by modifying the existing parameterizations,either the planetary boundary layer(PBL) schemes or the large-eddy simulation(LES) closures,to produce the right SGS turbulent fluxes at gray zone resolutions.However,the underlying forcings responsible for the changes in the vertical turbulent fluxes are largely ignored in these approaches.This study follows the original approach of Wyngaard(2004) and analyzes the turbulent buoyancy and momentum flux budgets,to gain a better understanding of the variations of flux forcings at gray zone resolutions.The investigation focuses on the pressure covariance term,which is one of the most dominant terms in the budget equations.By using the coarse-grained LES of a dry convective boundary layer(CBL) case as reference,two widely-used pressure covariance models are evaluated and optimized across the gray zone resolution range.The optimized linear model is further evaluated a priori against another dry CBL case with a different bulk stability,and a shallow-cumulus-topped boundary layer case.The model applies well to both cases,and notably shows good performance for the cloud layer.Based on the analysis of the flux forcings and the optimized pressure model,a scale-adaptive turbulence model for the gray zone is derived from the steady-state flux budgets.