The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a di...The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.展开更多
The LIGO detection of gravitational waves(GW) from merging black holes in 2015 marked the beginning of a new era in observational astronomy. The detection of an electromagnetic signal from a GW source is the critical ...The LIGO detection of gravitational waves(GW) from merging black holes in 2015 marked the beginning of a new era in observational astronomy. The detection of an electromagnetic signal from a GW source is the critical next step to explore in detail the physics involved. The Antarctic Survey Telescopes(AST3),located at Dome A, Antarctica, is uniquely situated for rapid response time-domain astronomy with its continuous night-time coverage during the austral winter. We report optical observations of the GW source(GW 170817) in the nearby galaxy NGC 4993 using AST3. The data show a rapidly fading transient at around 1 day after the GW trigger, with the i-band magnitude declining from 17:23 ± 0:13 magnitude to 17:72 ± 0:09 magnitude in ~1:8 h. The brightness and time evolution of the optical transient associated with GW 170817 are broadly consistent with the predictions of models involving merging binary neutron stars. We infer from our data that the merging process ejected about ~10^(-2) solar mass of radioactive material at a speed of up to 30% the speed of light.展开更多
基金This work is supported by“the Fundamental Research Funds for the Central Universities”,111 project No.B20019Shanghai Natural Science Foundation,grant No.19ZR1466800.
文摘The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.
基金supported by the National Basic Research Program(973 Program)of China(2013CB834900)the Chinese Polar Environment Comprehensive Investigation&Assessment Program(CHINARE2016-02-03)+21 种基金the National Natural Science Foundation of China(11573014,11673068,11325313,11633002,11433009,11725314)the Key Research Program of Frontier Sciences(QYZDY-SSW-SLH010,QYZDB-SSW-SYS005)the Strategic Priority Research Program"multi-waveband gravitational wave Universe”(XDB23040000)the Youth Innovation Promotion Association(2011231)of Chinese Academy of Sciencesfunds from Tsinghua UniversityNanjing UniversityBeijing Normal UniversityUniversity of New South WalesTexas A&M Universitythe Australian Antarctic Divisionthe National Collaborative Research Infrastructure Strategy(NCRIS)of Australiafunding from the Chinese Academy of Sciences through the Center for Astronomical Mega-Science and National Astronomical Observatory of China(NAOC)made possible through the use of the AAVSO Photometric All-Sky Survey(APASS)funded by the Robert Martin Ayers Sciences Fundfunded by the Australian Research Council(ARC)Centre of Excellence for Gravitational Wave Discovery(OzGrav),CE170100004the ARC Centre of Excellence for All-sky Astrophysics(CAASTRO),CE110001020the Centre of Excellence for All-sky Astrophysics in 3-Dimensions(ASTRO-3D),CE170100013provided by the Australian Astronomical Observatory(AAO)the ARC Future Fellowship grant,FT130101219supported by the National Basic Research Program(Project 973)of China(2014CB845800)the National Natural Science Foundation of China(11633001 and 11373014)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB23000000)
文摘The LIGO detection of gravitational waves(GW) from merging black holes in 2015 marked the beginning of a new era in observational astronomy. The detection of an electromagnetic signal from a GW source is the critical next step to explore in detail the physics involved. The Antarctic Survey Telescopes(AST3),located at Dome A, Antarctica, is uniquely situated for rapid response time-domain astronomy with its continuous night-time coverage during the austral winter. We report optical observations of the GW source(GW 170817) in the nearby galaxy NGC 4993 using AST3. The data show a rapidly fading transient at around 1 day after the GW trigger, with the i-band magnitude declining from 17:23 ± 0:13 magnitude to 17:72 ± 0:09 magnitude in ~1:8 h. The brightness and time evolution of the optical transient associated with GW 170817 are broadly consistent with the predictions of models involving merging binary neutron stars. We infer from our data that the merging process ejected about ~10^(-2) solar mass of radioactive material at a speed of up to 30% the speed of light.