期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Intermittent swelling and shrinkage of a highly expansive soil treated with polyacrylamide 被引量:4
1
作者 Amin Soltani An Deng +1 位作者 Abbas Taheri brendan c.o’kelly 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期252-261,共10页
This laboratory study examines the potential use of an anionic polyacrylamide(PAM)-based material as an environmentally sustainable additive for the stabilization of an expansive soil from South Australia.The experime... This laboratory study examines the potential use of an anionic polyacrylamide(PAM)-based material as an environmentally sustainable additive for the stabilization of an expansive soil from South Australia.The experimental program consisted of consistency limits,sediment volume,compaction and oedometer cyclic swell-shrink tests,performed using distilled water and four different PAM-to-water solutions of P_(D)=0.1 g/L,0.2 g/L,0.4 g/L and 0.6 g/L as the mixing liquids.Overall,the relative swelling and shrinkage strains were found to decrease with increasing number of applied swell-shrink cycles,with an‘elastic equilibrium’condition achieved on the conclusion of four cycles.The propensity for swelling/shrinkage potential reduction(for any given cycle)was found to be in favor of increasing the PAM dosage up to P_(D)=0.2 g/L,beyond which the excess PAM molecules self-associate as aggregates,thereby functioning as a lubricant instead of a flocculant;this critical dosage was termed‘maximum flocculation dosage’(MFD).The MFD assertion was discussed and validated using the consistency limits and sediment volume properties,both exhibiting only marginal variations beyond the identified MFD of P_(D)=0.2 g/L.The accumulated axial strain progressively transitioned from‘expansive’for the unamended soil to an ideal‘neutral’state at the MFD,while higher dosages demonstrated undesirable‘contractive’states. 展开更多
关键词 Expansive soil Polyacrylamide(PAM) Consistency limits Sediment volume Swell-shrink cycles Swelling and shrinkage strains Accumulated axial strain
下载PDF
Geotechnical investigation of low-plasticity organic soil treated with nano-calcium carbonate 被引量:1
2
作者 Govindarajan Kannan brendan c.o’kelly Evangelin Ramani Sujatha 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期500-509,共10页
Soil stabilization using nanomaterials is an emerging research area although,to date,its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field ap-plicati... Soil stabilization using nanomaterials is an emerging research area although,to date,its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field ap-plications.The present study advocates nano-calcium carbonate(NCC)material,a relatively unexplored nanomaterial additive,for stabilization of low-plasticity fine-grained soil having moderate organic content.The plasticity index,compaction,unconfined compressive strength(UCS),compressibility and permeability characteristics of the 0.2%,0.4%,0.6%and 0.8%NCC-treated soil,and untreated soil(as control),were determined,including investigations of the effect of up to 90-d curing on the UCS and permeability properties.In terms of UCS improvement,0.4%NCC addition was identified as the optimum dosage,mobilizing a UCS at 90-d curing of almost twice that for the untreated soil.For treated soil,particle aggregation arising from NCC addition initially produced an increase in the permeability coef-ficient,but its magnitude decreased for increased curing owing to calcium silicate hydrate(CSH)gel formation,although still remaining higher compared to the untreated soil for all dosages and curing periods investigated.Compression index decreased for all NCC-treated soil investigated.SEM micro-graphs indicated the presence of gel patches along with particle aggregation.X-ray diffraction(XRD)results showed the presence of hydration products,such as CSH.Significant increases in UCS are initially attributed to void filling and then because of CSH gel formation with increased curing. 展开更多
关键词 Organic silt Calcium carbonate Nano-calcium carbonate(NCC) Calcium silicate hydrate(CSH) Soil stabilization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部