Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l...Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.展开更多
Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nano...Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nanoscale to macroscale.This technique offers excellent manufacturing flexibility,geometric designability,cost-effectiveness,and eco-friendliness.Recent studies have focused on the utilization of 3D-printed critical materials for EESDs,which have demonstrated remarkable electrochemical performances,including high energy densities and rate capabilities,attributed to improved ion/electron transport abilities and fast kinetics.However,there is a lack of comprehensive reviews summarizing and discussing the recent advancements in the structural design and application of 3D-printed critical materials for EESDs,particularly rechargeable batteries.In this review,we primarily concentrate on the current progress in 3D printing(3DP)critical materials for emerging batteries.We commence by outlining the key characteristics of major 3DP methods employed for fabricating EESDs,encompassing design principles,materials selection,and optimization strategies.Subsequently,we summarize the recent advancements in 3D-printed critical materials(anode,cathode,electrolyte,separator,and current collector)for secondary batteries,including conventional Li-ion(LIBs),Na-ion(SIBs),K-ion(KIBs)batteries,as well as Li/Na/K/Zn metal batteries,Zn-air batteries,and Ni–Fe batteries.Within these sections,we discuss the 3DP precursor,design principles of 3D structures,and working mechanisms of the electrodes.Finally,we address the major challenges and potential applications in the development of 3D-printed critical materials for rechargeable batteries.展开更多
Aqueous zinc ion batteries have been considered as the prominent candidate in the next-generation batteries for its low cost,safety and high theoretical capacity.Nonetheless,formation of zinc dendrites and side reacti...Aqueous zinc ion batteries have been considered as the prominent candidate in the next-generation batteries for its low cost,safety and high theoretical capacity.Nonetheless,formation of zinc dendrites and side reactions at the electrode/electrolyte interface during the zinc plating/stripping process affect the cycling reversibility of the zinc anode.Regulation of the zinc plating/stripping process and realizing a highly reversible zinc anode is a great challenge.Herein,we applied a simple and effective approach of controlled-current zinc pre-deposition at copper mesh.At the current density of 40 mA cm^(-2),where the electron/ion transfers are both continuous and balanced,the Zn@CM-40 electrode with the(002)crystal plane orientation and the compactly aligned platelet morphology was successfully obtained.Compared with the zinc foil,the Zn@CM-40 exhibits greatly enhanced reversibility in the repeated plating/stripping(850 h at 1 mA cm^(-2))for the symmetric battery test.A series of characterization techniques including electrochemical analyses,XRD,SEM and optical microscopy observation,were used to demonstrate the correlation between the structure of pre-deposited zinc layer and the cycling stability.The COSMOL Multiphysics modeling demonstrates a more uniform electric field distribution in the Zn@CM than the zinc foil due to the aligned platelet morphology.Furthermore,the significant improvement is also achieved in a Zn||MnO_(2)full battery with a high capacity-retention(87%vs 47.8%).This study demonstrates that controlled-current electrodeposition represents an important strategy to regulate the crystal plane orientation and the morphology of the pre-deposited zinc layer,hence leading to the highly reversible and dendrite-free zinc anode for high-performance zinc ion batteries.展开更多
Aqueous zinc-ion batteries(AZIBs) have aroused significant research interest around the world in the past decade. The use of low-cost aqueous electrolytes and a metallic Zn anode with a suitable redox potential and hi...Aqueous zinc-ion batteries(AZIBs) have aroused significant research interest around the world in the past decade. The use of low-cost aqueous electrolytes and a metallic Zn anode with a suitable redox potential and high energy density make AZIBs a potential alternative to commercial Li-ion batteries in the development of next-generation batteries. However, owing to the narrow electrochemical stability window(ESW) of aqueous electrolytes, the choice of cathode materials is limited, because of which AZIBs exhibit a relatively low operating voltage and energy density. Hence, expanding the ESW of aqueous electrolytes is important for the development of practical AZIBs. This paper systematically reviews the electrolyte engineering strategies being explored to broaden the ESW of AZIBs. An in-depth analysis of high-voltage AZIBs is also presented. We suggest that the realization of high-voltage AZIBs depends on the synergistic development of suitable electrolytes and cathode materials. In addition, the cost associated with their fabrication as well as the use of standardized electrochemical tests should be considered during the design of high-voltage AZIBs.展开更多
Aqueous rechargeable zinc ion batteries(ARZIBs)have received unprecedented attention owing to the low cost and high-safety merits.However,their further development and application are hindered by the issues of electro...Aqueous rechargeable zinc ion batteries(ARZIBs)have received unprecedented attention owing to the low cost and high-safety merits.However,their further development and application are hindered by the issues of electrodes such as cathode dissolution,zinc anode dendrite,passivation,as well as sluggish reaction kinetics.Designing heterostructure electrodes is a powerful method to improve the electrochemical performance of electrodes by grafting the advantages of functional materials onto the active materials.In this review,various modified heterostructure electrodes with optimized electrochemical performance and wider applications are introduced.Moreover,the synergistic effect between active materials and functional materials are also in-depth analyzed.The specific modification methods are divided into interphase modification(electrode-electrolyte interphase and electrode-current collector interphase)and structure optimization.Finally,the conclusion and future perspective on the optimization mechanism of functional materials,and the cost issue of practical heterostructure electrodes in ARZIBs are also proposed.It is expected that this review can promote the further development of ARZIBs towards practical utility.展开更多
Subtle structural changes during electrochemical processes often relate to the degradation of electrode materials.Characterizing the minute-variations in complementary aspects such as crystal structure,chemical bonds,...Subtle structural changes during electrochemical processes often relate to the degradation of electrode materials.Characterizing the minute-variations in complementary aspects such as crystal structure,chemical bonds,and electron/ion conductivity will give an in-depth understanding on the reaction mechanism of electrode materials,as well as revealing pathways for optimization.Here,vanadium pentoxide (V2O5),a typical cathode material suffering from severe capacity decay during cycling,is characterized by in-situ X-ray diffraction (XRD) and in-situ Raman spectroscopy combined with electrochemical tests.The phase transitions of V2O5 within the 0-1 LiN ratio are characterized in detail.The V--O and V-V distances became more extended and shrank compared to the original ones after charge/discharge process,respectively.Combined with electrochemical tests,these variations are vital to the crystal structure cracking,which is linked with capacity fading.This work demonstrates that chemical bond changes between the transition metal and oxygen upon cycling serve as the origin of the capacity fading.展开更多
基金This work was financially supported by Stable Support Plan Program for Higher Education Institutions(20220815094504001)Shenzhen Key Laboratory of Advanced Energy Storage(ZDSYS20220401141000001)+1 种基金This work was also financially supported by the Shenzhen Science and Technology Innovation Commission(GJHZ20200731095606021,20200925155544005)the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(HZQB-KCZYB-2020083)。
文摘Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.
基金supported by Stable Support Plan Program for Higher Education Institutions(20220815094504001)Shenzhen Key Laboratory of Advanced Energy Storage(No.ZDSYS20220401141000001).
文摘Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nanoscale to macroscale.This technique offers excellent manufacturing flexibility,geometric designability,cost-effectiveness,and eco-friendliness.Recent studies have focused on the utilization of 3D-printed critical materials for EESDs,which have demonstrated remarkable electrochemical performances,including high energy densities and rate capabilities,attributed to improved ion/electron transport abilities and fast kinetics.However,there is a lack of comprehensive reviews summarizing and discussing the recent advancements in the structural design and application of 3D-printed critical materials for EESDs,particularly rechargeable batteries.In this review,we primarily concentrate on the current progress in 3D printing(3DP)critical materials for emerging batteries.We commence by outlining the key characteristics of major 3DP methods employed for fabricating EESDs,encompassing design principles,materials selection,and optimization strategies.Subsequently,we summarize the recent advancements in 3D-printed critical materials(anode,cathode,electrolyte,separator,and current collector)for secondary batteries,including conventional Li-ion(LIBs),Na-ion(SIBs),K-ion(KIBs)batteries,as well as Li/Na/K/Zn metal batteries,Zn-air batteries,and Ni–Fe batteries.Within these sections,we discuss the 3DP precursor,design principles of 3D structures,and working mechanisms of the electrodes.Finally,we address the major challenges and potential applications in the development of 3D-printed critical materials for rechargeable batteries.
基金supported by the National Natural Science Foundation of China(Grant Nos.52072285,52127816,51872218)the National Key Research and Development Program of China(Grant No.2020YFA0715000)the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(Grant No.XHT2020-003).
文摘Aqueous zinc ion batteries have been considered as the prominent candidate in the next-generation batteries for its low cost,safety and high theoretical capacity.Nonetheless,formation of zinc dendrites and side reactions at the electrode/electrolyte interface during the zinc plating/stripping process affect the cycling reversibility of the zinc anode.Regulation of the zinc plating/stripping process and realizing a highly reversible zinc anode is a great challenge.Herein,we applied a simple and effective approach of controlled-current zinc pre-deposition at copper mesh.At the current density of 40 mA cm^(-2),where the electron/ion transfers are both continuous and balanced,the Zn@CM-40 electrode with the(002)crystal plane orientation and the compactly aligned platelet morphology was successfully obtained.Compared with the zinc foil,the Zn@CM-40 exhibits greatly enhanced reversibility in the repeated plating/stripping(850 h at 1 mA cm^(-2))for the symmetric battery test.A series of characterization techniques including electrochemical analyses,XRD,SEM and optical microscopy observation,were used to demonstrate the correlation between the structure of pre-deposited zinc layer and the cycling stability.The COSMOL Multiphysics modeling demonstrates a more uniform electric field distribution in the Zn@CM than the zinc foil due to the aligned platelet morphology.Furthermore,the significant improvement is also achieved in a Zn||MnO_(2)full battery with a high capacity-retention(87%vs 47.8%).This study demonstrates that controlled-current electrodeposition represents an important strategy to regulate the crystal plane orientation and the morphology of the pre-deposited zinc layer,hence leading to the highly reversible and dendrite-free zinc anode for high-performance zinc ion batteries.
基金financially supported by Shenzhen Fundamental Research Programs (Nos. JCYJ20190809143815709 and JCYJ20200109141216566)Guangdong Natural Science Foundation (No. 2021A1515010412)+1 种基金the China Scholarship Council (CSC)Shenzhen Key Laboratory of Advanced Energy Storage (No. 202204013000060)。
文摘Aqueous zinc-ion batteries(AZIBs) have aroused significant research interest around the world in the past decade. The use of low-cost aqueous electrolytes and a metallic Zn anode with a suitable redox potential and high energy density make AZIBs a potential alternative to commercial Li-ion batteries in the development of next-generation batteries. However, owing to the narrow electrochemical stability window(ESW) of aqueous electrolytes, the choice of cathode materials is limited, because of which AZIBs exhibit a relatively low operating voltage and energy density. Hence, expanding the ESW of aqueous electrolytes is important for the development of practical AZIBs. This paper systematically reviews the electrolyte engineering strategies being explored to broaden the ESW of AZIBs. An in-depth analysis of high-voltage AZIBs is also presented. We suggest that the realization of high-voltage AZIBs depends on the synergistic development of suitable electrolytes and cathode materials. In addition, the cost associated with their fabrication as well as the use of standardized electrochemical tests should be considered during the design of high-voltage AZIBs.
基金supported by the National Key Research and Development Program of China(Nos.2020YFA0715004 and 2016YFA0202603)the National Natural Science Foundation of China(Nos.51832004 and 51521001)+1 种基金Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(No.XHT2020-003)Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(No.2018B030322001).
文摘Aqueous rechargeable zinc ion batteries(ARZIBs)have received unprecedented attention owing to the low cost and high-safety merits.However,their further development and application are hindered by the issues of electrodes such as cathode dissolution,zinc anode dendrite,passivation,as well as sluggish reaction kinetics.Designing heterostructure electrodes is a powerful method to improve the electrochemical performance of electrodes by grafting the advantages of functional materials onto the active materials.In this review,various modified heterostructure electrodes with optimized electrochemical performance and wider applications are introduced.Moreover,the synergistic effect between active materials and functional materials are also in-depth analyzed.The specific modification methods are divided into interphase modification(electrode-electrolyte interphase and electrode-current collector interphase)and structure optimization.Finally,the conclusion and future perspective on the optimization mechanism of functional materials,and the cost issue of practical heterostructure electrodes in ARZIBs are also proposed.It is expected that this review can promote the further development of ARZIBs towards practical utility.
文摘Subtle structural changes during electrochemical processes often relate to the degradation of electrode materials.Characterizing the minute-variations in complementary aspects such as crystal structure,chemical bonds,and electron/ion conductivity will give an in-depth understanding on the reaction mechanism of electrode materials,as well as revealing pathways for optimization.Here,vanadium pentoxide (V2O5),a typical cathode material suffering from severe capacity decay during cycling,is characterized by in-situ X-ray diffraction (XRD) and in-situ Raman spectroscopy combined with electrochemical tests.The phase transitions of V2O5 within the 0-1 LiN ratio are characterized in detail.The V--O and V-V distances became more extended and shrank compared to the original ones after charge/discharge process,respectively.Combined with electrochemical tests,these variations are vital to the crystal structure cracking,which is linked with capacity fading.This work demonstrates that chemical bond changes between the transition metal and oxygen upon cycling serve as the origin of the capacity fading.