The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will explore global dynamics of the magnetosphere under varying solar wind and interplane...The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will explore global dynamics of the magnetosphere under varying solar wind and interplanetary magnetic field conditions,and simultaneously monitor the auroral response of the Northern Hemisphere ionosphere.Combining these large-scale responses with medium and fine-scale measurements at a variety of cadences by additional ground-based and space-based instruments will enable a much greater scientific impact beyond the original goals of the SMILE mission.Here,we describe current community efforts to prepare for SMILE,and the benefits and context various experiments that have explicitly expressed support for SMILE can offer.A dedicated group of international scientists representing many different experiment types and geographical locations,the Ground-based and Additional Science Working Group,is facilitating these efforts.Preparations include constructing an online SMILE Data Fusion Facility,the discussion of particular or special modes for experiments such as coherent and incoherent scatter radar,and the consideration of particular observing strategies and spacecraft conjunctions.We anticipate growing interest and community engagement with the SMILE mission,and we welcome novel ideas and insights from the solar-terrestrial community.展开更多
Tribocorrosion tests were conducted on Ti6 Al4 V against alumina in phosphate buffered saline solution under normal loads of 3-30 N(corresponding to the maximum Hertzian contact pressures of 816-1758 MPa) using a ball...Tribocorrosion tests were conducted on Ti6 Al4 V against alumina in phosphate buffered saline solution under normal loads of 3-30 N(corresponding to the maximum Hertzian contact pressures of 816-1758 MPa) using a ball-on-disk tribometer. Nano-hardness measurements revealed the formation of work-hardened layers on the pure wear and tribocorrosion surfaces. As the normal load increased from 15 to 30 N during the pure wear, the surface hardness was increased by about 100%. However, a lower generation of wear debris resulted in a lower wear rate under a normal load of 30 N. The presence of corrosion caused an increase in the wear rates by 28%-245% under various normal loads. The corrosion current density acquired from polarization curves was increased by three orders of magnitude and the open circuit potential(OCP) shifted to more negative potentials during tribocorrosion compared with the stagnant condition. The successive formation and removal of tribofilms, which consisted of oxygen and phosphorous compounds, resulted in peaks in the OCP trend and lower fluctuations in coefficient of friction under normal loads higher than 3 N.展开更多
The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse.The targets decompress to near and...The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse.The targets decompress to near and lower than critical densities with plasmas extending over few micrometers,i.e.multiple wavelengths.The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam.Experiments at the Glass Hybrid OPCPA Scaled Test-bed(GHOST)laser system at University of Texas,Austin using such targets measured non-Maxwellian,peaked electron distribution with large bunch charge and high electron density in the laser propagation direction.These results are reproduced in 2D PIC simulations using the EPOCH code,identifying direct laser acceleration(DLA)[1]as the responsible mechanism.This is the first time that DLA has been observed to produce peaked spectra as opposed to broad,Maxwellian spectra observed in earlier experiments[2].This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.展开更多
Pulsar polarization profiles form a very basic database for understanding the emission processes in a pulsar magnetosphere.After careful polarization calibration of the 19-beam L-band receiver and verification of beam...Pulsar polarization profiles form a very basic database for understanding the emission processes in a pulsar magnetosphere.After careful polarization calibration of the 19-beam L-band receiver and verification of beamoffset observation results,we obtain polarization profiles of 682 pulsars from observations by the Five-hundredmeter Aperture Spherical radio Telescope(FAST)duringthe Galactic Plane Pulsar Snapshot survey and other normal FAST projects.Among them,polarization profiles of about 460 pulsars are observed for the first time.The profiles exhibit diverse features.Some pulsars have a polarization position angle curve with a good S-shaped swing,some with orthogonal modes;some have components with highly linearly polarized components or strong circularly polarized components;some have a very wide profile,coming from an aligned rotator,and some have an interpulse from a perpendicular rotator;some wide profiles are caused by interstellar scattering.We derive geometric parameters for 190 pulsars from the S-shaped position angle curves or with orthogonal modes.We find that the linear and circular polarization or the widths of pulse profiles have various frequency dependencies.Pulsars with a large fraction of linear polarization are more likely to have a large Edot.展开更多
The collective dynamics of magnetic domain wall under electric current is studied in the form of spin transfer torque(STT). The out-of-plane STT induced effective force is obtained based on the Landau-Lifshitz-Gilbert...The collective dynamics of magnetic domain wall under electric current is studied in the form of spin transfer torque(STT). The out-of-plane STT induced effective force is obtained based on the Landau-Lifshitz-Gilbert(LLG) equation including microscopic STT terms. The relation between microscopic calculations and collective description of the domain wall motion is established. With our numerical calculations based on tight binding free electron model, we find that the non adiabatic out-of-plane torque components have considerable non-local properties. It turns out that the calculated effective forces decay significantly with increasing domain wall widths.展开更多
KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data ...KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data analysis.It is a big challenge to simulate the KM2A detector in the framework of Geant4 due to the need to track numerous photons from a large number of detector units(>6000)with large altitude difference(30)and huge coverage(1.3).In this paper,the design of the KM2A simulation code G4KM2A based on Geant4 is introduced.The process of G4KM2A is optimized mainly in memory consumption to avoid memory overflow.Some simplifications are used to significantly speed up the execution of G4KM2A.The running time is reduced by at least 30 times compared to full detector simulation.The particle distributions and the core/angle resolution comparison between simulation and experimental data of the full KM2A array are also presented,which show good agreement.展开更多
Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in t...Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.展开更多
The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energy...The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energyγ-rays using data collected from August 2021 to August 2022,resulting in an improvement in significance of the detection in the Crab Nebula of approximately 15%,compared with that of previous cuts.With the implementation of these new selection criteria,the angular resolution was also significantly improved by approximately 10%at tens of TeV.Other aspects of the full KM2A array performance,such as the pointing error,were also calibrated using the Crab Nebula.The resulting energy spectrum of the Crab Nebula in the energy range of 10-1000 TeV are well fitted by a log-parabola model,which is consistent with the previous results from LHAASO and other experiments.展开更多
The microstructure evolution and phase composition of an α+β titanium alloy, Ti-3Al-5Mo-4.5V(wt.%),have been investigated. Electron probe micro analysis(EPMA) quantitative results manifest that the stability of β p...The microstructure evolution and phase composition of an α+β titanium alloy, Ti-3Al-5Mo-4.5V(wt.%),have been investigated. Electron probe micro analysis(EPMA) quantitative results manifest that the stability of β phase decreases with increasing quenching temperature, which is influenced by the significant variation of β-stabilizing elements concentration. Detailed microstructure analysis shows that the β→ωphase transformation does occur when quenching at 750℃ and 800 ℃. The ω-reflections change from incommensurate ω-spots(750 ℃) to ideal ω-spots(800 ℃) as the β stability of the alloy decreases. Further the decrease of β phase stability encourages the formation of athermal α " martensite, which has the following orientation relationships: [111]β//[110]α",[100]p//[100]α " and [-110]p//[00-1]α" with respect to the β matrix.展开更多
A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detecto...A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered.展开更多
Double-side probeless friction stir spot welding (DP-FSSW) of AA2198 alloy was conducted to investigate the microstructure and mechanical properties. Compared with common single-side probeless friction stir spot weldi...Double-side probeless friction stir spot welding (DP-FSSW) of AA2198 alloy was conducted to investigate the microstructure and mechanical properties. Compared with common single-side probeless friction stir spot welding (P-FSSW), the plastic strain during DP-FSSW is nearly symmetrical with respect to the bondline to suppress the extension of hook defect, which is detrimental to the joint mechanical strength. With DP-FSSW, a fully metallurgically bonded region has formed due to severe plastic deformation at high temperatures. Tensile/shear tests show that the joint strength could exceed 8 kN, which is comparable to P-FSSW and refill FSSW, and all fractures happen in a shear failure mode as cracks extend along the in terface of two sheets. The microhard ness profile exhibits a uniform distribution along the thick ness direction, in which the hook defect shows the lowest value.展开更多
Evolution of deformation mechanisms and mechanical properties of Ti-3Al-5Mo-4.5V alloy with different β phase stability have been systematically investigated. β phase stability alteration is achieved through quenchi...Evolution of deformation mechanisms and mechanical properties of Ti-3Al-5Mo-4.5V alloy with different β phase stability have been systematically investigated. β phase stability alteration is achieved through quenching temperature variation from dual α+β field(700℃) to single β field(880℃). Tensile tests at ambient temperature show that apparent yield strength of the alloy experiences an abrupt decrease followed by a significant increase from 700℃ to 880℃. Work hardening behavior is characterized by transition from the initial two-regime feature to the three-stage outlook. Concurrently, the maximum working hardening rate drops from 14000 MPa to 3000 MPa, which is concurrent with the shrinking volume fraction of primary a phase. Detailed discussion about the relationship between deformation mechanisms and β phase stability has been outlined.展开更多
The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard ...The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.展开更多
Digital Earth is an information expression of the real Earth,and is a new way of understanding the Earth in the twenty-first century.This paper introduces a Digital Earth Prototype System(DEPS)developed at the Chinese...Digital Earth is an information expression of the real Earth,and is a new way of understanding the Earth in the twenty-first century.This paper introduces a Digital Earth Prototype System(DEPS)developed at the Chinese Academy of Sciences(CAS)and supported by the Knowledge Innovation Program of the Chinese Academy of Sciences.Discussions are made to the theoretical model and technical framework of the Digital Earth,and its related key technologies on spatial information processing,spatial data warehouse technology,virtual reality technology,high-performance and parallel computing.The DEPS consists of seven sub-systems including the spatial data,metadata,model database,Grid geoscience computing,spatial information database,maps service and virtual reality.Meanwhile,we developed a series of application systems such as the environment monitoring for the Olympic Games 2008 in Beijing,natural disasters evaluation,digital city,digital archeology,Asia regional aerosol and climate change.The DEPS/CAS displayed the application ability and potential of the Digital Earth in three levels:the global,national and regional.展开更多
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility(SULF).The peak power reaches 2.4 PW on target without the last amplifying...We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility(SULF).The peak power reaches 2.4 PW on target without the last amplifying during the experiment.The laser energy of 72±9 J is directed to a focal spot of approximately 6μm diameter(full width at half maximum)in 30 fs pulse duration,yielding a focused peak intensity around 2.0×10^(21)W/cm^(2).The first laser-proton acceleration experiment is performed using plain copper and plastic targets.High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4μm via target normal sheath acceleration.For plastic targets of tens of nanometers thick,the proton cut-off energy is approximately 20 MeV,showing ring-like or flamented density distributions.These experimental results reflect the capabilities of the SULF-10 PW beamline,for example,both ultrahigh intensity and relatively good beam contrast.Further optimization for these key parameters is underway,where peak laser intensities of 10^(22)-10^(23)w/cm^(2)are anticipated to support various experiments on extreme field physics.展开更多
In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility a...In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility and hemocompatibility of Zn alloys were studied with pure Zn as control, Commercial Zn alloys demonstrated increased strength and superb elongation compared with pure Zn. Accelerated corrosion rates and uniform corrosion morphologies were observed in terms of commercial Zn alloys due to galvanic effects between Zn matrix and α-Al phases. 100% extracts of ZA4-1 and ZA6-1 alloys showed mild cytotoxicity while 50% extracts of all samples displayed good biocompatibility. Retardant cell cycle and inhibited stress fibers expression were observed induced by high concentration of Zn^2+ releasing during corrosion. The hemolysis ratios of Zn alloys were lower than 1% while the adhered platelets showed slightly activated morphologies. In general, commercial Zn alloys possess promising mechanical properties, appropriate corrosion rates, significantly improved biocompatibility and good hemocompatibility in comparison to pure Zn. It is feasible to develop biodegradable metals based on commercial Zn alloys.展开更多
First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark w...First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark with strangeness with a significance of 3.1r including systematic uncertainties and lookelsewhere effect.Its mass and width are determined to be 4458:8±2:9t4:7-1:1 MeV and 17:3±6:5t8:0-5:7 MeV,respectively,where the quoted uncertainties are statistical and systematic.The structure is also consistent with being due to two resonances.In addition,the narrow excited■^(-)states,N■(1690)and■(1820),are seen for the first time in a■b^(-)decay,and their masses and widths are measured with improved precision.The analysis is performed using pp collision data corresponding to a total integrated luminosity of 9 fb^(-1),collected with the LHCb experiment at centre-of-mass energies of 7,8 and 13 TeV.展开更多
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration(LDPA)and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers us...The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration(LDPA)and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources.The successful use of the SG-II Peta-watt(SG-II PW)laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility.Recently,the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source,laser contrast and terminal focus.LDPA experiments were performed using the maintained SG-II PW laser beam,and the highest cutoff energy of the proton beam was obviously increased.Accordingly,a double-film target structure was used,and the maximum cutoff energy of the proton beam was up to 70 MeV.These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.展开更多
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金supported by Royal Society grant DHFR1211068funded by UKSA+14 种基金STFCSTFC grant ST/M001083/1funded by STFC grant ST/W00089X/1supported by NERC grant NE/W003309/1(E3d)funded by NERC grant NE/V000748/1support from NERC grants NE/V015133/1,NE/R016038/1(BAS magnetometers),and grants NE/R01700X/1 and NE/R015848/1(EISCAT)supported by NERC grant NE/T000937/1NSFC grants 42174208 and 41821003supported by the Research Council of Norway grant 223252PRODEX arrangement 4000123238 from the European Space Agencysupport of the AUTUMN East-West magnetometer network by the Canadian Space Agencysupported by NASA’s Heliophysics U.S.Participating Investigator Programsupport from grant NSF AGS 2027210supported by grant Dnr:2020-00106 from the Swedish National Space Agencysupported by the German Research Foundation(DFG)under number KR 4375/2-1 within SPP"Dynamic Earth"。
文摘The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will explore global dynamics of the magnetosphere under varying solar wind and interplanetary magnetic field conditions,and simultaneously monitor the auroral response of the Northern Hemisphere ionosphere.Combining these large-scale responses with medium and fine-scale measurements at a variety of cadences by additional ground-based and space-based instruments will enable a much greater scientific impact beyond the original goals of the SMILE mission.Here,we describe current community efforts to prepare for SMILE,and the benefits and context various experiments that have explicitly expressed support for SMILE can offer.A dedicated group of international scientists representing many different experiment types and geographical locations,the Ground-based and Additional Science Working Group,is facilitating these efforts.Preparations include constructing an online SMILE Data Fusion Facility,the discussion of particular or special modes for experiments such as coherent and incoherent scatter radar,and the consideration of particular observing strategies and spacecraft conjunctions.We anticipate growing interest and community engagement with the SMILE mission,and we welcome novel ideas and insights from the solar-terrestrial community.
文摘Tribocorrosion tests were conducted on Ti6 Al4 V against alumina in phosphate buffered saline solution under normal loads of 3-30 N(corresponding to the maximum Hertzian contact pressures of 816-1758 MPa) using a ball-on-disk tribometer. Nano-hardness measurements revealed the formation of work-hardened layers on the pure wear and tribocorrosion surfaces. As the normal load increased from 15 to 30 N during the pure wear, the surface hardness was increased by about 100%. However, a lower generation of wear debris resulted in a lower wear rate under a normal load of 30 N. The presence of corrosion caused an increase in the wear rates by 28%-245% under various normal loads. The corrosion current density acquired from polarization curves was increased by three orders of magnitude and the open circuit potential(OCP) shifted to more negative potentials during tribocorrosion compared with the stagnant condition. The successive formation and removal of tribofilms, which consisted of oxygen and phosphorous compounds, resulted in peaks in the OCP trend and lower fluctuations in coefficient of friction under normal loads higher than 3 N.
基金supported by NNSA cooperative agreement DE-NA0002008the Defense Advanced Research Projects Agency's PULSE program(12-63-PULSE-FP014)the Air Force Office of Scientific Research(FA9550-14-1-0045).
文摘The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse.The targets decompress to near and lower than critical densities with plasmas extending over few micrometers,i.e.multiple wavelengths.The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam.Experiments at the Glass Hybrid OPCPA Scaled Test-bed(GHOST)laser system at University of Texas,Austin using such targets measured non-Maxwellian,peaked electron distribution with large bunch charge and high electron density in the laser propagation direction.These results are reproduced in 2D PIC simulations using the EPOCH code,identifying direct laser acceleration(DLA)[1]as the responsible mechanism.This is the first time that DLA has been observed to produce peaked spectra as opposed to broad,Maxwellian spectra observed in earlier experiments[2].This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.
基金supported by the National Natural Science Foundation of China(NSFC,grant Nos.11988101 and 11833009),supported by the National Natural Science Foundation of China(NSFC,grant No.U2031115)supported by the National Key R&D Program of China(No.2021YFA1600401 and 2021YFA1600400)+1 种基金National Natural Science Foundation of China(NSFC,grant Nos.11873058 and 12133004)the National SKA program of China(No.2020SKA0120200)。
文摘Pulsar polarization profiles form a very basic database for understanding the emission processes in a pulsar magnetosphere.After careful polarization calibration of the 19-beam L-band receiver and verification of beamoffset observation results,we obtain polarization profiles of 682 pulsars from observations by the Five-hundredmeter Aperture Spherical radio Telescope(FAST)duringthe Galactic Plane Pulsar Snapshot survey and other normal FAST projects.Among them,polarization profiles of about 460 pulsars are observed for the first time.The profiles exhibit diverse features.Some pulsars have a polarization position angle curve with a good S-shaped swing,some with orthogonal modes;some have components with highly linearly polarized components or strong circularly polarized components;some have a very wide profile,coming from an aligned rotator,and some have an interpulse from a perpendicular rotator;some wide profiles are caused by interstellar scattering.We derive geometric parameters for 190 pulsars from the S-shaped position angle curves or with orthogonal modes.We find that the linear and circular polarization or the widths of pulse profiles have various frequency dependencies.Pulsars with a large fraction of linear polarization are more likely to have a large Edot.
基金supported by NSF of China(Grant No.60825405)MOST of China(2006CB933000)
文摘The collective dynamics of magnetic domain wall under electric current is studied in the form of spin transfer torque(STT). The out-of-plane STT induced effective force is obtained based on the Landau-Lifshitz-Gilbert(LLG) equation including microscopic STT terms. The relation between microscopic calculations and collective description of the domain wall motion is established. With our numerical calculations based on tight binding free electron model, we find that the non adiabatic out-of-plane torque components have considerable non-local properties. It turns out that the calculated effective forces decay significantly with increasing domain wall widths.
基金supported by the following grants:The National Key R&D program of China under grants 2018YFA0404201the National Natural Science Foundation of China(NSFC)No.12022502,No.12205314,No.12105301,No.12261160362,No.12105294,No.U1931201,No.12393851,No.12393854+1 种基金In Thailand,support was provided by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT)under the High-Potential Research Team Grant Program(N42A650868).
文摘KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data analysis.It is a big challenge to simulate the KM2A detector in the framework of Geant4 due to the need to track numerous photons from a large number of detector units(>6000)with large altitude difference(30)and huge coverage(1.3).In this paper,the design of the KM2A simulation code G4KM2A based on Geant4 is introduced.The process of G4KM2A is optimized mainly in memory consumption to avoid memory overflow.Some simplifications are used to significantly speed up the execution of G4KM2A.The running time is reduced by at least 30 times compared to full detector simulation.The particle distributions and the core/angle resolution comparison between simulation and experimental data of the full KM2A array are also presented,which show good agreement.
基金supported by the National Natural Science Foundation of China(12393851,12261160362,12393852,12393853,12393854,12022502,2205314,12105301,12105292,12105294,12005246,and 12173039)Department of Science and Technology of Sichuan Province(24NSFJQ0060 and 2024NSFSC0449)+5 种基金Project for Young Scientists in Basic Research of Chinese Academy of Sciences(YSBR-061,2022010)Thailand by the National Science and Technology Development Agency(NSTDA)National Research Council of Thailand(NRCT):High-Potential Research Team Grant Program(N42A650868)the Chengdu Management Committee of Tianfu New Area for constant financial support to research with LHAASO datathe Milky Way Imaging Scroll Painting(MWISP)project,sponsored by the National Key R&D Program of China(2023YFA1608000 and 2017YFA0402701)the CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH047)。
文摘Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.
基金Supported by the National Key R&D Program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203,2018YFA0404204)the National Natural Science Foundation of China(12022502,12205314,12105301,12261160362,12105294,U1931201)+2 种基金the Youth Innovation Promotion Association CAS(2022010)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT):High-Potential Research Team Grant Program(N42A650868)。
文摘The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energyγ-rays using data collected from August 2021 to August 2022,resulting in an improvement in significance of the detection in the Crab Nebula of approximately 15%,compared with that of previous cuts.With the implementation of these new selection criteria,the angular resolution was also significantly improved by approximately 10%at tens of TeV.Other aspects of the full KM2A array performance,such as the pointing error,were also calibrated using the Crab Nebula.The resulting energy spectrum of the Crab Nebula in the energy range of 10-1000 TeV are well fitted by a log-parabola model,which is consistent with the previous results from LHAASO and other experiments.
基金supported from the National Natural Science Foundation of China(No.51401221,51622401 and 51628402)support from the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB06050100)
文摘The microstructure evolution and phase composition of an α+β titanium alloy, Ti-3Al-5Mo-4.5V(wt.%),have been investigated. Electron probe micro analysis(EPMA) quantitative results manifest that the stability of β phase decreases with increasing quenching temperature, which is influenced by the significant variation of β-stabilizing elements concentration. Detailed microstructure analysis shows that the β→ωphase transformation does occur when quenching at 750℃ and 800 ℃. The ω-reflections change from incommensurate ω-spots(750 ℃) to ideal ω-spots(800 ℃) as the β stability of the alloy decreases. Further the decrease of β phase stability encourages the formation of athermal α " martensite, which has the following orientation relationships: [111]β//[110]α",[100]p//[100]α " and [-110]p//[00-1]α" with respect to the β matrix.
基金Supported in China by National Key R&D program of China under the grants(2018YF A0404201.2018YFA0404202.2018YF A0404203)by NSFC(12022502,190527,135011,11761141001.U1931112,11775131,U1931201,11905043,U1931108)by NSFSPC(ZR2019MA014),and in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered.
基金financially supported by the National Natural Science Foundation of China (No. 51574196)the Aeronautical Science Foundation of China (No. 20161125002)the “111 Project” (No. B08040)
文摘Double-side probeless friction stir spot welding (DP-FSSW) of AA2198 alloy was conducted to investigate the microstructure and mechanical properties. Compared with common single-side probeless friction stir spot welding (P-FSSW), the plastic strain during DP-FSSW is nearly symmetrical with respect to the bondline to suppress the extension of hook defect, which is detrimental to the joint mechanical strength. With DP-FSSW, a fully metallurgically bonded region has formed due to severe plastic deformation at high temperatures. Tensile/shear tests show that the joint strength could exceed 8 kN, which is comparable to P-FSSW and refill FSSW, and all fractures happen in a shear failure mode as cracks extend along the in terface of two sheets. The microhard ness profile exhibits a uniform distribution along the thick ness direction, in which the hook defect shows the lowest value.
基金supported by the National Natural Science Foundation of China(No.51401221,51622401 and 51628402)the support from the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB06050100)
文摘Evolution of deformation mechanisms and mechanical properties of Ti-3Al-5Mo-4.5V alloy with different β phase stability have been systematically investigated. β phase stability alteration is achieved through quenching temperature variation from dual α+β field(700℃) to single β field(880℃). Tensile tests at ambient temperature show that apparent yield strength of the alloy experiences an abrupt decrease followed by a significant increase from 700℃ to 880℃. Work hardening behavior is characterized by transition from the initial two-regime feature to the three-stage outlook. Concurrently, the maximum working hardening rate drops from 14000 MPa to 3000 MPa, which is concurrent with the shrinking volume fraction of primary a phase. Detailed discussion about the relationship between deformation mechanisms and β phase stability has been outlined.
基金Supported by the following grants:the National Key R&D program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203)the National Natural Science Foundation of China(12022502,11905227,U1931112,11635011,11761141001,Y811A35,11675187,U1831208,U1931111)in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.
基金supported by National Basic Research Program of China(973 Program,NO.2009CB723906)the Knowledge Innovation Program of Chinese Academy of Sciences(NO.KKCX1-YW-01).
文摘Digital Earth is an information expression of the real Earth,and is a new way of understanding the Earth in the twenty-first century.This paper introduces a Digital Earth Prototype System(DEPS)developed at the Chinese Academy of Sciences(CAS)and supported by the Knowledge Innovation Program of the Chinese Academy of Sciences.Discussions are made to the theoretical model and technical framework of the Digital Earth,and its related key technologies on spatial information processing,spatial data warehouse technology,virtual reality technology,high-performance and parallel computing.The DEPS consists of seven sub-systems including the spatial data,metadata,model database,Grid geoscience computing,spatial information database,maps service and virtual reality.Meanwhile,we developed a series of application systems such as the environment monitoring for the Olympic Games 2008 in Beijing,natural disasters evaluation,digital city,digital archeology,Asia regional aerosol and climate change.The DEPS/CAS displayed the application ability and potential of the Digital Earth in three levels:the global,national and regional.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB16)the National Natural Science Foundation of China(Nos.11875307,11935008,11804348,11705260,11905278 and 11975302)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2021242).
文摘We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility(SULF).The peak power reaches 2.4 PW on target without the last amplifying during the experiment.The laser energy of 72±9 J is directed to a focal spot of approximately 6μm diameter(full width at half maximum)in 30 fs pulse duration,yielding a focused peak intensity around 2.0×10^(21)W/cm^(2).The first laser-proton acceleration experiment is performed using plain copper and plastic targets.High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4μm via target normal sheath acceleration.For plastic targets of tens of nanometers thick,the proton cut-off energy is approximately 20 MeV,showing ring-like or flamented density distributions.These experimental results reflect the capabilities of the SULF-10 PW beamline,for example,both ultrahigh intensity and relatively good beam contrast.Further optimization for these key parameters is underway,where peak laser intensities of 10^(22)-10^(23)w/cm^(2)are anticipated to support various experiments on extreme field physics.
基金supported by the National Basic Research Program of China (973 Program) (Grant Nos. 2012CB619102 and 012CB619100)National Science Fund for Distinguished Young Scholars (Grant No. 51225101)+3 种基金National Natural Science Foundation of China (Grant Nos. 51431002 and 31170909)the NSFC/RGC Joint Research Scheme (Grant No. 51361165101)State Key Laboratory for Mechanical Behavior of Materials (Grant No. 20141615)Beijing Municipal Science and Technology Project (No. Z141100002814008)
文摘In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility and hemocompatibility of Zn alloys were studied with pure Zn as control, Commercial Zn alloys demonstrated increased strength and superb elongation compared with pure Zn. Accelerated corrosion rates and uniform corrosion morphologies were observed in terms of commercial Zn alloys due to galvanic effects between Zn matrix and α-Al phases. 100% extracts of ZA4-1 and ZA6-1 alloys showed mild cytotoxicity while 50% extracts of all samples displayed good biocompatibility. Retardant cell cycle and inhibited stress fibers expression were observed induced by high concentration of Zn^2+ releasing during corrosion. The hemolysis ratios of Zn alloys were lower than 1% while the adhered platelets showed slightly activated morphologies. In general, commercial Zn alloys possess promising mechanical properties, appropriate corrosion rates, significantly improved biocompatibility and good hemocompatibility in comparison to pure Zn. It is feasible to develop biodegradable metals based on commercial Zn alloys.
文摘First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark with strangeness with a significance of 3.1r including systematic uncertainties and lookelsewhere effect.Its mass and width are determined to be 4458:8±2:9t4:7-1:1 MeV and 17:3±6:5t8:0-5:7 MeV,respectively,where the quoted uncertainties are statistical and systematic.The structure is also consistent with being due to two resonances.In addition,the narrow excited■^(-)states,N■(1690)and■(1820),are seen for the first time in a■b^(-)decay,and their masses and widths are measured with improved precision.The analysis is performed using pp collision data corresponding to a total integrated luminosity of 9 fb^(-1),collected with the LHCb experiment at centre-of-mass energies of 7,8 and 13 TeV.
基金National Natural Science Foundation of China(Grant No.12075227)the National Natural Science Foundation of China-NSAF(Grant No.U2130121)+1 种基金the National Key Research and Development Program of China(Grant No.2016YFA0401102)the Science Challenge Project(Grant No.TZ2018005).
文摘The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration(LDPA)and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources.The successful use of the SG-II Peta-watt(SG-II PW)laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility.Recently,the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source,laser contrast and terminal focus.LDPA experiments were performed using the maintained SG-II PW laser beam,and the highest cutoff energy of the proton beam was obviously increased.Accordingly,a double-film target structure was used,and the maximum cutoff energy of the proton beam was up to 70 MeV.These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.