Chinese chestnut is an important nut tree around the world.Although the types of Chinese chestnut resources are abundant,resource utilization and protection of chestnut accessions are still very limited.Here,we finger...Chinese chestnut is an important nut tree around the world.Although the types of Chinese chestnut resources are abundant,resource utilization and protection of chestnut accessions are still very limited.Here,we fingerprinted and determined the genetic relationships and core collections of Chinese chestnuts using 18 fluorescently labeled SSR markers generated from 146 chestnut accessions.Our analyses showed that these markers from the tested accessions are highly polymorphic,with an average allele number(N_(a))and polymorphic information content(PIC)of 8.100 and 0.622 per locus,respectively.Using these strongly distinguishing markers,we successfully constructed unique fingerprints for 146 chestnut accessions and selected seven of the SSR markers as core markers to rapidly distinguish different accessions.Our exploration of the genetic relationships among the five cultivar groups indicated that Chinese chestnut accessions are divided into three regional type groups:group I(North China(NC)and Northwest China(NWC)cultivar groups),group II(middle and lower reaches of the Yangtze River(MLY)cultivar group)and group III(Southeast China(SEC)and Southwest China(SWC)cultivar groups).Finally,we selected 45 core collection members which represent the most genetic diversity of Chinese chestnut accessions.This study provides valuable information for identifying chestnut accessions and understanding the phylogenetic relationships among cultivar groups,which can serve as the basis for efficient breeding in the future.展开更多
Somatic embryogenesis(SE)is an effective approach of in vitro regeneration that depends on plant cell totipotency.However,largely unknown of molecular mechanisms of SE in woody plants such as Chinese chestnut(Castanea...Somatic embryogenesis(SE)is an effective approach of in vitro regeneration that depends on plant cell totipotency.However,largely unknown of molecular mechanisms of SE in woody plants such as Chinese chestnut(Castanea mollissima Blume),limits the development of the woody plant industry.Here,we report the MADS-box transcription factor Cm AGL11 in Chinese chestnut.Cm AGL11 transcripts specifically accumulated in the globular embryo.Overexpression of Cm AGL11 in chestnut callus enhanced its SE capacity,and the development of somatic embryos occurred significantly faster than in the control.RNA-seq results showed that Cm AGL11 affects the expression of several genes related to the gibberellin,auxin,and ethylene pathways.Moreover,the analysis of DNA methylation status indicated that the promoter methylation plays a role in regulation of Cm AGL11 expression during SE.Our results demonstrated that Cm AGL11 plays an important role in the SE process in Chinese chestnut,possibly by regulating gibberellin,auxin,and ethylene pathways.It will help establish an efficient platform to accelerate genetic improvement and germplasm innovation in Chinese chestnut.展开更多
基金the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality,China(IDHT20180509)the National Key Research&Development Program of China(2018YFD1000605)the Opening Project of Beijing Key Laboratory of New Technology in Agricultural Application,China(kf2018024)。
文摘Chinese chestnut is an important nut tree around the world.Although the types of Chinese chestnut resources are abundant,resource utilization and protection of chestnut accessions are still very limited.Here,we fingerprinted and determined the genetic relationships and core collections of Chinese chestnuts using 18 fluorescently labeled SSR markers generated from 146 chestnut accessions.Our analyses showed that these markers from the tested accessions are highly polymorphic,with an average allele number(N_(a))and polymorphic information content(PIC)of 8.100 and 0.622 per locus,respectively.Using these strongly distinguishing markers,we successfully constructed unique fingerprints for 146 chestnut accessions and selected seven of the SSR markers as core markers to rapidly distinguish different accessions.Our exploration of the genetic relationships among the five cultivar groups indicated that Chinese chestnut accessions are divided into three regional type groups:group I(North China(NC)and Northwest China(NWC)cultivar groups),group II(middle and lower reaches of the Yangtze River(MLY)cultivar group)and group III(Southeast China(SEC)and Southwest China(SWC)cultivar groups).Finally,we selected 45 core collection members which represent the most genetic diversity of Chinese chestnut accessions.This study provides valuable information for identifying chestnut accessions and understanding the phylogenetic relationships among cultivar groups,which can serve as the basis for efficient breeding in the future.
基金supported by the National Key Research&Development Program of China(2018YFD1000605)the National Natural Science Foundation of China(31870671 and 31672135)+1 种基金the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality,China(IDHT20180509)the Supporting Plan for Cultivating High Level Teachers in Colleges and Universities in Beijing,China(CIT&TCD20180317)。
文摘Somatic embryogenesis(SE)is an effective approach of in vitro regeneration that depends on plant cell totipotency.However,largely unknown of molecular mechanisms of SE in woody plants such as Chinese chestnut(Castanea mollissima Blume),limits the development of the woody plant industry.Here,we report the MADS-box transcription factor Cm AGL11 in Chinese chestnut.Cm AGL11 transcripts specifically accumulated in the globular embryo.Overexpression of Cm AGL11 in chestnut callus enhanced its SE capacity,and the development of somatic embryos occurred significantly faster than in the control.RNA-seq results showed that Cm AGL11 affects the expression of several genes related to the gibberellin,auxin,and ethylene pathways.Moreover,the analysis of DNA methylation status indicated that the promoter methylation plays a role in regulation of Cm AGL11 expression during SE.Our results demonstrated that Cm AGL11 plays an important role in the SE process in Chinese chestnut,possibly by regulating gibberellin,auxin,and ethylene pathways.It will help establish an efficient platform to accelerate genetic improvement and germplasm innovation in Chinese chestnut.