The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the w...The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.展开更多
类胡萝卜素(Car)与叶绿素a含量比值(Car/Chla)的变化与植被生长发育变化、环境胁迫及叶片衰老特征等密切相关,可作为植被生理生态及物候的监测指标。不同植被类型和植被品种其色素变化随植被生长发育呈现出不同的变化特征。为了探究适...类胡萝卜素(Car)与叶绿素a含量比值(Car/Chla)的变化与植被生长发育变化、环境胁迫及叶片衰老特征等密切相关,可作为植被生理生态及物候的监测指标。不同植被类型和植被品种其色素变化随植被生长发育呈现出不同的变化特征。为了探究适用于干旱区棉花Car/Chla比值估算的光谱指数和估算方法,本研究通过2011年和2012年连续2年的大面积田间试验,获取了棉花不同生育期的叶片及冠层尺度光谱反射率及色素含量信息,对多种光谱指数及偏最小二乘回归(Partial Least Square Regression,PLSR)用于Car/Chla比值和Car估算进行了探讨。对比表明,基于光化学指数(PhotochemicalReflectanceIndex,PRI)的线性和一元二次模型对Car/Chla比值和Car的估算精度最高,由PRI-Car/Chla线性模型得到的叶片和冠层尺度的Car/Chla比值估算值与实测值之间的决定系数R2大于0.6,PRI-Car的R2大于0.36;基于PLSR模型得到的Car/Chla比值估算值与实测值之间的拟合关系略优于基于PRI的估算模型,由其得到的叶片及冠层尺度Car/Chla比值估算值与实测值之间的决定系数R2大于0.80,Car估算值与实测值之间R2大于0.73;不论基于PRI还是基于PLSR方法,对Car/Chla比值的估算精度均高于Car含量,该结论进一步证实了Car/Chla比值遥感监测的可行性,丰富了对棉花生长高温胁迫、养分胁迫等环境胁迫及病虫害等遥感监测的依据指标。展开更多
As the largest inland river basin of China,the Tarim River Basin(TRB),known for its various natural resources and fragile environment,has an increased risk of ecological crisis due to the intensive exploitation and ut...As the largest inland river basin of China,the Tarim River Basin(TRB),known for its various natural resources and fragile environment,has an increased risk of ecological crisis due to the intensive exploitation and utilization of water and land resources.Since the Ecological Water Diversion Project(EWDP),which was implemented in 2001 to save endangered desert vegetation,there has been growing evidence of ecological improvement in local regions,but few studies have performed a comprehensive ecological vulnerability assessment of the whole TRB.This study established an evaluation framework integrating the analytic hierarchy process(AHP)and entropy method to estimate the ecological vulnerability of the TRB covering climatic,ecological,and socioeconomic indicators during 2000-2017.Based on the geographical detector model,the importance of ten driving factors on the spatial-temporal variations of ecological vulnerability was explored.The results showed that the ecosystem of the TRB was fragile,with more than half of the area(57.27%)dominated by very heavy and heavy grades of ecological vulnerability,and 28.40%of the area had potential and light grades of ecological vulnerability.The light grade of ecological vulnerability was distributed in the northern regions(Aksu River and Weigan River catchments)and western regions(Kashgar River and Yarkant River catchments),while the heavy grade was located in the southern regions(Kunlun Mountains and Qarqan River catchments)and the Mainstream catchment.The ecosystems in the western and northern regions were less vulnerable than those in the southern and eastern regions.From 2000 to 2017,the overall improvement in ecological vulnerability in the whole TRB showed that the areas with great ecological improvement increased by 46.11%,while the areas with ecological degradation decreased by 9.64%.The vegetation cover and potential evapotranspiration(PET)were the obvious driving factors,explaining 57.56% and 21.55%of the changes in ecological vulnerability across the TRB,respectively.In terms of ecological vulnerability grade changes,obvious spatial differences were observed in the upper,middle,and lower reaches of the TRB due to the different vegetation and hydrothermal conditions.The alpine source region of the TRB showed obvious ecological improvement due to increased precipitation and temperature,but the alpine meadow of the Kaidu River catchment in the Middle Tianshan Mountains experienced degradation associated with overgrazing and local drought.The improved agricultural management technologies had positive effects on farmland ecological improvement,while the desert vegetation in oasis-desert ecotones showed a decreasing trend as a result of cropland reclamation and intensive drought.The desert riparian vegetation in the lower reaches of the Tarim River was greatly improved due to the implementation of the EWDP,which has been active for tens of years.These results provide comprehensive knowledge about ecological processes and mechanisms in the whole TRB and help to develop environmental restoration measures based on different ecological vulnerability grades in each sub-catchment.展开更多
基金funded by the National Natural Science Foundation of China(42071245)the Xinjiang Uygur Autonomous Region Innovation Environment Construction Special Project&Science and Technology Innovation Base Construction Project(PT2107)+2 种基金the Third Xinjiang Comprehensive Scientific Survey Project Sub-topic(2021xjkk140305)the Tianshan Talent Training Program of Xinjiang Uygur Autonomous Region(2022TSYCLJ0011)the K.C.Wong Education Foundation(GJTD-2020-14).
文摘The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.
文摘类胡萝卜素(Car)与叶绿素a含量比值(Car/Chla)的变化与植被生长发育变化、环境胁迫及叶片衰老特征等密切相关,可作为植被生理生态及物候的监测指标。不同植被类型和植被品种其色素变化随植被生长发育呈现出不同的变化特征。为了探究适用于干旱区棉花Car/Chla比值估算的光谱指数和估算方法,本研究通过2011年和2012年连续2年的大面积田间试验,获取了棉花不同生育期的叶片及冠层尺度光谱反射率及色素含量信息,对多种光谱指数及偏最小二乘回归(Partial Least Square Regression,PLSR)用于Car/Chla比值和Car估算进行了探讨。对比表明,基于光化学指数(PhotochemicalReflectanceIndex,PRI)的线性和一元二次模型对Car/Chla比值和Car的估算精度最高,由PRI-Car/Chla线性模型得到的叶片和冠层尺度的Car/Chla比值估算值与实测值之间的决定系数R2大于0.6,PRI-Car的R2大于0.36;基于PLSR模型得到的Car/Chla比值估算值与实测值之间的拟合关系略优于基于PRI的估算模型,由其得到的叶片及冠层尺度Car/Chla比值估算值与实测值之间的决定系数R2大于0.80,Car估算值与实测值之间R2大于0.73;不论基于PRI还是基于PLSR方法,对Car/Chla比值的估算精度均高于Car含量,该结论进一步证实了Car/Chla比值遥感监测的可行性,丰富了对棉花生长高温胁迫、养分胁迫等环境胁迫及病虫害等遥感监测的依据指标。
基金This research was supported by the National Key Research and Development Plan of China(2017YFB0504204)the CAS Interdisciplinary Innovation Team(JCTD-2019-20)+1 种基金the Tianshan Innovation Team(2020D14016)the National Natural Science Foundation of China(U2003201).
文摘As the largest inland river basin of China,the Tarim River Basin(TRB),known for its various natural resources and fragile environment,has an increased risk of ecological crisis due to the intensive exploitation and utilization of water and land resources.Since the Ecological Water Diversion Project(EWDP),which was implemented in 2001 to save endangered desert vegetation,there has been growing evidence of ecological improvement in local regions,but few studies have performed a comprehensive ecological vulnerability assessment of the whole TRB.This study established an evaluation framework integrating the analytic hierarchy process(AHP)and entropy method to estimate the ecological vulnerability of the TRB covering climatic,ecological,and socioeconomic indicators during 2000-2017.Based on the geographical detector model,the importance of ten driving factors on the spatial-temporal variations of ecological vulnerability was explored.The results showed that the ecosystem of the TRB was fragile,with more than half of the area(57.27%)dominated by very heavy and heavy grades of ecological vulnerability,and 28.40%of the area had potential and light grades of ecological vulnerability.The light grade of ecological vulnerability was distributed in the northern regions(Aksu River and Weigan River catchments)and western regions(Kashgar River and Yarkant River catchments),while the heavy grade was located in the southern regions(Kunlun Mountains and Qarqan River catchments)and the Mainstream catchment.The ecosystems in the western and northern regions were less vulnerable than those in the southern and eastern regions.From 2000 to 2017,the overall improvement in ecological vulnerability in the whole TRB showed that the areas with great ecological improvement increased by 46.11%,while the areas with ecological degradation decreased by 9.64%.The vegetation cover and potential evapotranspiration(PET)were the obvious driving factors,explaining 57.56% and 21.55%of the changes in ecological vulnerability across the TRB,respectively.In terms of ecological vulnerability grade changes,obvious spatial differences were observed in the upper,middle,and lower reaches of the TRB due to the different vegetation and hydrothermal conditions.The alpine source region of the TRB showed obvious ecological improvement due to increased precipitation and temperature,but the alpine meadow of the Kaidu River catchment in the Middle Tianshan Mountains experienced degradation associated with overgrazing and local drought.The improved agricultural management technologies had positive effects on farmland ecological improvement,while the desert vegetation in oasis-desert ecotones showed a decreasing trend as a result of cropland reclamation and intensive drought.The desert riparian vegetation in the lower reaches of the Tarim River was greatly improved due to the implementation of the EWDP,which has been active for tens of years.These results provide comprehensive knowledge about ecological processes and mechanisms in the whole TRB and help to develop environmental restoration measures based on different ecological vulnerability grades in each sub-catchment.