The dynamics analysis plays an important role for the control, simulation and optimization of the parallel manipulators. Normally, the Stewart type manipulators have a platform and several legs. The inverse dynamics c...The dynamics analysis plays an important role for the control, simulation and optimization of the parallel manipulators. Normally, the Stewart type manipulators have a platform and several legs. The inverse dynamics can be solved efficiently by taking the advantage of such structural characteristics. However, for the forward dynamics analysis, this structural decomposition still faces challenges from both modeling and computation. In this paper, an efficient approach is proposed for the forward dynamics of the 6-PUS manipulator based on the platform-legs composite simulation. By composite method, the dynamics modeling of the parallel manipulator is separated into the forward dynamics of the platform and the kineto-statics of the legs. The global simulation model can be constructed by connecting the predefined platform model and leg models according to the manipulator's topology. Thus, the global simulation can be decomposed into the independent calculations of purely algebraic equations and ordinary differential equations (ODEs), the computational cost can be reduced and the stability of the simulation can be improved. For the purpose of solving the manipulator's forward dynamics accurately, the algebraic-loop problem is discussed and a closed form algorithm is proposed. A numerical example of the 6-PUS manipulator is given to demonstrate the effectiveness of the proposed approach. The example results show that the modeling efficiency can be improved and the simulation stability can be ensured for decomposing the system equations into purely algebraic equations and ODEs.展开更多
The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effe...The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effective and efficient methods for the optimum selection among different types of mechanism candidates. This paper presents a new strategy for the purpose of optimum mechanism type selection based on the modified particle swarm optimization method. The concept of sub-swarm is introduced to represent the different mechanisms generated by the type synthesis, and a competitive mechanism is employed between the sub-swarms to reassign their population size according to the relative performances of the mechanism candidates to implement the optimization. Combining with a modular modeling approach for fast calculation of the performance index of the potential candidates, the proposed method is applied to determine the optimum mechanism type among the potential candidates for the desired manipulator. The effectiveness and efficiency of the proposed method is demonstrated through a case study on the optimum selection of mechanism type of a heavy manipulator where six feasible candidates are considered with force capability as the specific performance index. The optimization result shows that the fitness of the optimum mechanism type for the considered heavy manipulator can be up to 0.578 5. This research provides the instruction in optimum selection of mechanism types for robotic manipulators.展开更多
Redundantly actuated parallel manipulators have the advantage of enhancing load-carrying capability over their non-redundant ones, however they also cause the problem of uneven load distribution and need a high requir...Redundantly actuated parallel manipulators have the advantage of enhancing load-carrying capability over their non-redundant ones, however they also cause the problem of uneven load distribution and need a high requirement for the control system. This paper presents a 2-RPR/RP planar redundantly actuated parallel manipulator which can self-coordinate the distribution of external loads. This capability is realized by an appropriate design of the moving platform to make the manipulator stable at equilibrium position. The stability is proved by the theorem of direct Lyapunov method in classical mechanics. The numerical simulations are conducted to validate the stable capability by means of the observation of potential energies and phase planes. This paper offers an alternative way to design a redundantly actuated manipulator with the capability of self-coordinating the load distribution to actuations, such that parts of the controlling work are assigned to the manipulator itself by its own structure and only a little work remains to the control system.展开更多
Parallel continuum robots(PCRs) have attracted increasing attention in the robotics community due to their simplicity in structure,inherence with compliance, and easiness of realization. Over the past decade, a variet...Parallel continuum robots(PCRs) have attracted increasing attention in the robotics community due to their simplicity in structure,inherence with compliance, and easiness of realization. Over the past decade, a variety of novel designs have been reported to enrich their diversity. However, there is a lack of systematic review of these emerging robots. To this end, this paper conducts a comprehensive survey on the mechanism design, kinetostatic modeling and analysis, and performance evaluation. For these robots, kinetostatic modeling plays a fundamental role throughout the design, analysis, and control stages. A systematic review of the existing approaches for kinetostatic modeling and analysis is provided, and a comparison is made to distinguish their differences. As well, a classification is made according to the characteristics of structure and actuation. In addition, performance evaluation on the workspace, stability, and singularity is also overviewed. Finally, the scenarios of potential applications are elaborated, and future research prospects are discussed. We believe that the information provided in this paper will be particularly useful for those who are interested in PCRs.展开更多
This paper proposes an approach to evaluate the performance of robot manipulator from the view of energy analysis. Based on the dynamics analysis of the manipulator, the Energy Distribution Index (EDI) is defined to...This paper proposes an approach to evaluate the performance of robot manipulator from the view of energy analysis. Based on the dynamics analysis of the manipulator, the Energy Distribution Index (EDI) is defined to depict the energy increment contribution of its subsystem to the whole manipulator. EDI is applied to the evaluation of the buffeting capability of the manipulator working under unpredictable and heavy external loads. A series of buffering indices, the Static Buffering Index (SBI), Kineto-Static Buffering Index (KBI), Dynamic Buffering Index (DBI), and Global Buffering Index (GBI) are proposed to evaluate the buffering capability under different conditions. In order to acquire higher calculation accuracy, the general stiffness mapping of manipulators considering the actuator stiffness, inertia of the manipulator, damping, as well as elasticity of linkages is developed. Three different robot manipulators are studied as evaluation cases, in which the buffering structures are mechanism with variable topology, linear springs, and the elasticity of linkages respectively. The case studies show that the indices based on energy analysis have the advantage of coordinate free and are effective for buffering capability evaluation.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50605042)National Basic Research Program of China (973 Program, Grant No. 2006CB705400)
文摘The dynamics analysis plays an important role for the control, simulation and optimization of the parallel manipulators. Normally, the Stewart type manipulators have a platform and several legs. The inverse dynamics can be solved efficiently by taking the advantage of such structural characteristics. However, for the forward dynamics analysis, this structural decomposition still faces challenges from both modeling and computation. In this paper, an efficient approach is proposed for the forward dynamics of the 6-PUS manipulator based on the platform-legs composite simulation. By composite method, the dynamics modeling of the parallel manipulator is separated into the forward dynamics of the platform and the kineto-statics of the legs. The global simulation model can be constructed by connecting the predefined platform model and leg models according to the manipulator's topology. Thus, the global simulation can be decomposed into the independent calculations of purely algebraic equations and ordinary differential equations (ODEs), the computational cost can be reduced and the stability of the simulation can be improved. For the purpose of solving the manipulator's forward dynamics accurately, the algebraic-loop problem is discussed and a closed form algorithm is proposed. A numerical example of the 6-PUS manipulator is given to demonstrate the effectiveness of the proposed approach. The example results show that the modeling efficiency can be improved and the simulation stability can be ensured for decomposing the system equations into purely algebraic equations and ODEs.
基金supported by National Natural Science Foundation of China (Grant No. 51075259)Program for New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET-10-0579)+1 种基金National Basic Research Program of China (973 program, Grant No.2006CB705407)Key Technologies R&D Program of Shanghai,China (Grant No. 10111100203)
文摘The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effective and efficient methods for the optimum selection among different types of mechanism candidates. This paper presents a new strategy for the purpose of optimum mechanism type selection based on the modified particle swarm optimization method. The concept of sub-swarm is introduced to represent the different mechanisms generated by the type synthesis, and a competitive mechanism is employed between the sub-swarms to reassign their population size according to the relative performances of the mechanism candidates to implement the optimization. Combining with a modular modeling approach for fast calculation of the performance index of the potential candidates, the proposed method is applied to determine the optimum mechanism type among the potential candidates for the desired manipulator. The effectiveness and efficiency of the proposed method is demonstrated through a case study on the optimum selection of mechanism type of a heavy manipulator where six feasible candidates are considered with force capability as the specific performance index. The optimization result shows that the fitness of the optimum mechanism type for the considered heavy manipulator can be up to 0.578 5. This research provides the instruction in optimum selection of mechanism types for robotic manipulators.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2014CB046600)National Natural Science Foundation of China(Grant No.11472172)+1 种基金National Science Foundation for the Youth(Grant No.51305256)Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20130073110039)
文摘Redundantly actuated parallel manipulators have the advantage of enhancing load-carrying capability over their non-redundant ones, however they also cause the problem of uneven load distribution and need a high requirement for the control system. This paper presents a 2-RPR/RP planar redundantly actuated parallel manipulator which can self-coordinate the distribution of external loads. This capability is realized by an appropriate design of the moving platform to make the manipulator stable at equilibrium position. The stability is proved by the theorem of direct Lyapunov method in classical mechanics. The numerical simulations are conducted to validate the stable capability by means of the observation of potential energies and phase planes. This paper offers an alternative way to design a redundantly actuated manipulator with the capability of self-coordinating the load distribution to actuations, such that parts of the controlling work are assigned to the manipulator itself by its own structure and only a little work remains to the control system.
基金supported by the National Key R&D Program of China(Grant No. 2022YFB4701200)the National Natural Science Foundation of China(NSFC)(Grant Nos. 52022056 and 51875334)the Innovation Foundation of the Manufacturing Engineering Technology Research Center of Commercial Aircraft Corporation of China(Grant No. COMAC-SFGS-2023-41)。
文摘Parallel continuum robots(PCRs) have attracted increasing attention in the robotics community due to their simplicity in structure,inherence with compliance, and easiness of realization. Over the past decade, a variety of novel designs have been reported to enrich their diversity. However, there is a lack of systematic review of these emerging robots. To this end, this paper conducts a comprehensive survey on the mechanism design, kinetostatic modeling and analysis, and performance evaluation. For these robots, kinetostatic modeling plays a fundamental role throughout the design, analysis, and control stages. A systematic review of the existing approaches for kinetostatic modeling and analysis is provided, and a comparison is made to distinguish their differences. As well, a classification is made according to the characteristics of structure and actuation. In addition, performance evaluation on the workspace, stability, and singularity is also overviewed. Finally, the scenarios of potential applications are elaborated, and future research prospects are discussed. We believe that the information provided in this paper will be particularly useful for those who are interested in PCRs.
基金supported by the National Natural Science Foundation of China(Grant No.51075259,50821003)the National Basic Research Program of China("973"Program)(Grant No.2006CB705400)
文摘This paper proposes an approach to evaluate the performance of robot manipulator from the view of energy analysis. Based on the dynamics analysis of the manipulator, the Energy Distribution Index (EDI) is defined to depict the energy increment contribution of its subsystem to the whole manipulator. EDI is applied to the evaluation of the buffeting capability of the manipulator working under unpredictable and heavy external loads. A series of buffering indices, the Static Buffering Index (SBI), Kineto-Static Buffering Index (KBI), Dynamic Buffering Index (DBI), and Global Buffering Index (GBI) are proposed to evaluate the buffering capability under different conditions. In order to acquire higher calculation accuracy, the general stiffness mapping of manipulators considering the actuator stiffness, inertia of the manipulator, damping, as well as elasticity of linkages is developed. Three different robot manipulators are studied as evaluation cases, in which the buffering structures are mechanism with variable topology, linear springs, and the elasticity of linkages respectively. The case studies show that the indices based on energy analysis have the advantage of coordinate free and are effective for buffering capability evaluation.