Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and...Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock.展开更多
Objective:Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents,with a poor prognosis.Anchorage-dependent cell death(anoikis)has been proven to be indispensable in ...Objective:Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents,with a poor prognosis.Anchorage-dependent cell death(anoikis)has been proven to be indispensable in tumor metastasis,regulating the migration and adhesion of tumor cells at the primary site.However,as a type of programmed cell death,anoikis is rarely studied in osteosarcoma,especially in the tumor immune microenvironment.This study aims to clarify prognostic value of anoikis and tumor immune microenvironment-related gene in the treatment of osteosarcoma.Methods:Anoikis-related genes(ANRGs)were obtained from GeneCards.Clinical information and ANRGs expression profiles of osteosarcoma patients were sourced from the therapeutically applicable research to generate effective therapies and Gene Expression Omnibus(GEO)databases.ANRGs highly associated with tumor immune microenvironment were identified by the estimate package and the weighted gene coexpression network analysis(WGCNA)algorithm.Machine learning algorithms were performed to construct long-term survival predictive strategy,each sample was divided into high-risk and low-risk subgroups,which was further verified in the GEO cohort.Finally,based on single-cell RNA-seq from the GEO database,analysis was done on the function of signature genes in the osteosarcoma tumor microenvironment.Results:A total of 51 hub ANRGs closely associated with the tumor microenvironment were identified,from which 3 genes(MERTK,BNIP3,S100A8)were selected to construct the prognostic model.Significant differences in immune cell activation and immune-related signaling pathways were observed between the high-risk and low-risk groups based on tumor microenvironment analysis(all P<0.05).Additionally,characteristic genes within the osteosarcoma microenvironment were identified in regulation of intercellular crosstalk through the GAS6-MERTK signaling pathway.Conclusion:The prognostic model based on ANRGs and tumor microenvironment demonstrate good predictive power and provide more personalized treatment options for patients with osteosarcoma.展开更多
The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fib...The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fiber of high elastic modulus) reinforced concrete under medium strain rate(10-6 s-1-10-4 s-1). In order to study the effect of strain rate on the damage characteristics of fiber reinforced concrete during the full curve damage process, the real time dynamic acoustic emission(AE) technique was applied to monitor the damage process of fiber reinforced concrete at three strain rates. The AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency at three strain rates were analyzed. With the accumulation of damage, the AE wavelet energy spectrum in ca8 frequency band increased first and then decreased, and the average AE peak frequency increased gradually. With the increase of strain rate, the AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency decreased gradually. The polypropylene fiber content has more obvious effect on the Dynamic increase factor(DIF) of the peak stress than the steel fiber content. The theoretical basis was provided for the monitoring of dynamic damage of fiber reinforced concrete based on the AE technique.展开更多
基金Supported by the National Natural Science Foundation of China(52192622,52304003).
文摘Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock.
基金This work was supported by the National Natural Science Foundation(82172594 and 82373046)the Hunan Graduate Research Innovation Project(CX20230318),China.
文摘Objective:Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents,with a poor prognosis.Anchorage-dependent cell death(anoikis)has been proven to be indispensable in tumor metastasis,regulating the migration and adhesion of tumor cells at the primary site.However,as a type of programmed cell death,anoikis is rarely studied in osteosarcoma,especially in the tumor immune microenvironment.This study aims to clarify prognostic value of anoikis and tumor immune microenvironment-related gene in the treatment of osteosarcoma.Methods:Anoikis-related genes(ANRGs)were obtained from GeneCards.Clinical information and ANRGs expression profiles of osteosarcoma patients were sourced from the therapeutically applicable research to generate effective therapies and Gene Expression Omnibus(GEO)databases.ANRGs highly associated with tumor immune microenvironment were identified by the estimate package and the weighted gene coexpression network analysis(WGCNA)algorithm.Machine learning algorithms were performed to construct long-term survival predictive strategy,each sample was divided into high-risk and low-risk subgroups,which was further verified in the GEO cohort.Finally,based on single-cell RNA-seq from the GEO database,analysis was done on the function of signature genes in the osteosarcoma tumor microenvironment.Results:A total of 51 hub ANRGs closely associated with the tumor microenvironment were identified,from which 3 genes(MERTK,BNIP3,S100A8)were selected to construct the prognostic model.Significant differences in immune cell activation and immune-related signaling pathways were observed between the high-risk and low-risk groups based on tumor microenvironment analysis(all P<0.05).Additionally,characteristic genes within the osteosarcoma microenvironment were identified in regulation of intercellular crosstalk through the GAS6-MERTK signaling pathway.Conclusion:The prognostic model based on ANRGs and tumor microenvironment demonstrate good predictive power and provide more personalized treatment options for patients with osteosarcoma.
基金Funded by the National Natural Science Foundation of China(No.51009058)Postdoctoral Science Foundation of China(No.2011M501160)+1 种基金the University Natural Science Research Project of Jiangsu Province(No.13KJD560002)the Doctoral Research Start-up Fund of Jinling Institute of Technology(No.Jit-b-201321)
文摘The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fiber of high elastic modulus) reinforced concrete under medium strain rate(10-6 s-1-10-4 s-1). In order to study the effect of strain rate on the damage characteristics of fiber reinforced concrete during the full curve damage process, the real time dynamic acoustic emission(AE) technique was applied to monitor the damage process of fiber reinforced concrete at three strain rates. The AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency at three strain rates were analyzed. With the accumulation of damage, the AE wavelet energy spectrum in ca8 frequency band increased first and then decreased, and the average AE peak frequency increased gradually. With the increase of strain rate, the AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency decreased gradually. The polypropylene fiber content has more obvious effect on the Dynamic increase factor(DIF) of the peak stress than the steel fiber content. The theoretical basis was provided for the monitoring of dynamic damage of fiber reinforced concrete based on the AE technique.