随着可再生能源装机的快速增长,以及电网由大同步电网向多分区异步互联电网的架构转变,使得分区电网逐步呈现“低惯量+调频资源匮乏”的特性,频率安全问题日益凸显。利用高压直流输电系统(high voltage direct current,HVDC)的快速功率...随着可再生能源装机的快速增长,以及电网由大同步电网向多分区异步互联电网的架构转变,使得分区电网逐步呈现“低惯量+调频资源匮乏”的特性,频率安全问题日益凸显。利用高压直流输电系统(high voltage direct current,HVDC)的快速功率控制能力可实现对异步互联分区电网之间调频资源的共享,抑制大频率扰动后的频率变化率及频率极值点,提升异步互联电网的频率稳定性。首先,介绍了国内外基于直流系统的调频控制方法以及直流参与调频后异步互联系统频率稳定分析的研究现状。然后,详细阐述了基于电网换相换流器和基于电压源型换流器两种类型HVDC频率控制方法的基本原理,以及HVDC参与频率支撑后异步互联系统的频率稳定分析方法。最后,对多分区异步互联系统频率稳定分析和直流调频控制目前存在的问题以及未来发展方向进行了总结和归纳。展开更多
文摘随着可再生能源装机的快速增长,以及电网由大同步电网向多分区异步互联电网的架构转变,使得分区电网逐步呈现“低惯量+调频资源匮乏”的特性,频率安全问题日益凸显。利用高压直流输电系统(high voltage direct current,HVDC)的快速功率控制能力可实现对异步互联分区电网之间调频资源的共享,抑制大频率扰动后的频率变化率及频率极值点,提升异步互联电网的频率稳定性。首先,介绍了国内外基于直流系统的调频控制方法以及直流参与调频后异步互联系统频率稳定分析的研究现状。然后,详细阐述了基于电网换相换流器和基于电压源型换流器两种类型HVDC频率控制方法的基本原理,以及HVDC参与频率支撑后异步互联系统的频率稳定分析方法。最后,对多分区异步互联系统频率稳定分析和直流调频控制目前存在的问题以及未来发展方向进行了总结和归纳。