The interaction of Pb Cd can be observed not only in the uptake process of elements by plants and in their influence on the growth, but also in rhizosphere. The changes in extractable Cd and Pb concentrations in the ...The interaction of Pb Cd can be observed not only in the uptake process of elements by plants and in their influence on the growth, but also in rhizosphere. The changes in extractable Cd and Pb concentrations in the rhizosphere soil of rice plants, root exudates from wheat and wheat plant and their complexing capacity with Pb and Cd were investigated under different Pb and Cd treatments. Results showed that the concentration of extractable Cd in the rhizosphere of rice in red soil was markedly increased by Pb Cd interaction. It increased by 56% in the treatment with Pb and Cd added against that in the treatment with only Cd added in soil. The considerable differences in both composition and amount of root exudate from wheat and rice were found among different treatments. Pb and Cd might be complexed by root exudates. The concentrations of free Pb and Cd in the solution were increased markedly by adding root exudate from wheat and decreased by that from rice due to Pb Cd interaction. The distribution patterns of Pb and Cd in roots were affected by Pb Cd interaction, which accelerated transport of Pb into internal tissue and retarded accumulation of Cd in external tissue.展开更多
The effects of combined heavy metal pollution of red soil on the growth of wetland rice and the transfer of Pb, Cd, Cu and Zn from soil into plants were studied by greenhouse pot experiment. The results showed that th...The effects of combined heavy metal pollution of red soil on the growth of wetland rice and the transfer of Pb, Cd, Cu and Zn from soil into plants were studied by greenhouse pot experiment. The results showed that the plat yields were markedly affected by heavy metals, with the exception of Pb, in soils under the experimental conditions, without taking into consideration all the interactions among the elements. The concentrations of the elements in plants were mainly affected by the specific element added to the soil. The effect of interactions among the heavy metals was very significant either on plant yields or on the concentration of the elements in plants. The risk assessment of a combined pollution by heavy metals in the soil is discussed preliminarily in terms of the relative pollution equivalent.展开更多
A study on the effect of Pb-Cd interaction on plant growth and on the chemistry of elements in plants was conducted under greenhouse condition with red soil-wetland rice system in different growth stage. The results s...A study on the effect of Pb-Cd interaction on plant growth and on the chemistry of elements in plants was conducted under greenhouse condition with red soil-wetland rice system in different growth stage. The results showed that Pb-Cd interactions on growth and metal uptake varied with different growth stageS and chemical compounds added. The plant height and the root weight were markedly affected by Pb-Cd interiction in the young stage but not in the ripening stage of rice at the treatments of PbCl_2 and CdCl_2 added. However, the weight of rice straw in the ripening stage was significantly effected by Pb-Cd interaction with the treatments of Pb(OAc)_2 and CdCl_2. The chemistry of elements in plants also depended on Pb-Cd interaction in varying degrees on account of different plant parts and growth stage. It seems that Pb-Cd interaction occurred not only in roots but also in other parts of wetland rice.展开更多
文摘The interaction of Pb Cd can be observed not only in the uptake process of elements by plants and in their influence on the growth, but also in rhizosphere. The changes in extractable Cd and Pb concentrations in the rhizosphere soil of rice plants, root exudates from wheat and wheat plant and their complexing capacity with Pb and Cd were investigated under different Pb and Cd treatments. Results showed that the concentration of extractable Cd in the rhizosphere of rice in red soil was markedly increased by Pb Cd interaction. It increased by 56% in the treatment with Pb and Cd added against that in the treatment with only Cd added in soil. The considerable differences in both composition and amount of root exudate from wheat and rice were found among different treatments. Pb and Cd might be complexed by root exudates. The concentrations of free Pb and Cd in the solution were increased markedly by adding root exudate from wheat and decreased by that from rice due to Pb Cd interaction. The distribution patterns of Pb and Cd in roots were affected by Pb Cd interaction, which accelerated transport of Pb into internal tissue and retarded accumulation of Cd in external tissue.
文摘The effects of combined heavy metal pollution of red soil on the growth of wetland rice and the transfer of Pb, Cd, Cu and Zn from soil into plants were studied by greenhouse pot experiment. The results showed that the plat yields were markedly affected by heavy metals, with the exception of Pb, in soils under the experimental conditions, without taking into consideration all the interactions among the elements. The concentrations of the elements in plants were mainly affected by the specific element added to the soil. The effect of interactions among the heavy metals was very significant either on plant yields or on the concentration of the elements in plants. The risk assessment of a combined pollution by heavy metals in the soil is discussed preliminarily in terms of the relative pollution equivalent.
文摘A study on the effect of Pb-Cd interaction on plant growth and on the chemistry of elements in plants was conducted under greenhouse condition with red soil-wetland rice system in different growth stage. The results showed that Pb-Cd interactions on growth and metal uptake varied with different growth stageS and chemical compounds added. The plant height and the root weight were markedly affected by Pb-Cd interiction in the young stage but not in the ripening stage of rice at the treatments of PbCl_2 and CdCl_2 added. However, the weight of rice straw in the ripening stage was significantly effected by Pb-Cd interaction with the treatments of Pb(OAc)_2 and CdCl_2. The chemistry of elements in plants also depended on Pb-Cd interaction in varying degrees on account of different plant parts and growth stage. It seems that Pb-Cd interaction occurred not only in roots but also in other parts of wetland rice.