Mg-Gd-Zn based alloys have better creep resistance than other Mg alloys and attract more attention at elevated temperatures.However,the multiple alloying elements and various heat treatment conditions,combined with co...Mg-Gd-Zn based alloys have better creep resistance than other Mg alloys and attract more attention at elevated temperatures.However,the multiple alloying elements and various heat treatment conditions,combined with complex microstructural evolution during creep tests,bring great challenges in understanding and predicting creep behaviors.In this study,we proposed to predict the creep properties and reveal the creep mechanisms of Mg-Gd-Zn based alloys by machine learning.On the one hand,the minimum creep rates were effectively predicted by using a support vector regression model.The complex and nonmonotonic effects of test temperature,test stress,alloying elements,and heat treatment conditions on the creep properties were revealed.On the other hand,the creep stress exponents and creep activation energies were calculated by machine learning to analyze the variation of creep mechanisms,based on which the constitutive equations of Mg-Gd-Zn based alloys were obtained.This study introduces an efficient method to comprehend creep behaviors through machine learning,offering valuable insights for the future design and selection of Mg alloys.展开更多
This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employ...This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employed to identify the damage location and sizes from vibration curvature data.An inverse method is subsequently then used to determine the bending stiffness reduction ratio along a specified direction,enabling the quantification of the delamination severity.The method employed in this study is an extension of the one-dimensional inverse method developed in a previous work of the authors.The applicability of the two-step inverse approach is demonstrated in a simulation analysis and by an experimental study on a cantilever composite plate containing a single delamination.The inverse method is shown to have the capacity to reveal the detailed damage information of delamination within a constrained searching space and can be used to determine the effective flexural stiffness of composite plate structures,even in cases of complex delamination damage.展开更多
A systematic perspective on agricultural supply chain finance can offer fresh insights into its development.The high-quality development of the agricultural supply chain finance ecosystem is crucial for the comprehens...A systematic perspective on agricultural supply chain finance can offer fresh insights into its development.The high-quality development of the agricultural supply chain finance ecosystem is crucial for the comprehensive revitalization of rural areas and the realization of agricultural power.Based on the current state of development of this ecosystem,this paper identifies several bottlenecks,such as insufficient policy and technical support in the macro-environment system,weak incentives for independent circulation within the industrial environment system,and inadequate motivation for stakeholders to participate in the micro-environment system.To address these issues,this paper proposes that the visualization,digitalization,and authenticity characteristics of the“blockchain+Internet of Things”technology architecture can effectively resolve these bottlenecks.Additionally,targeted strategies are suggested to promote the high-quality development of the agricultural supply chain finance ecosystem.展开更多
Along with the extensive application of energy storage devices,the spent lithium-ion batteries(LIBs)are unquestionably classified into the secondary resources due to its high content of several valuable metals.However...Along with the extensive application of energy storage devices,the spent lithium-ion batteries(LIBs)are unquestionably classified into the secondary resources due to its high content of several valuable metals.However,current recycling methods have the main drawback to their tedious process,especially the purification and separation process.Herein,we propose a simplified process to recycle both cathode(LiCoO_(2))and anode(graphite)in the spent LIBs and regenerate newly high-performance anode material,CoO/CoFe2O4/expanded graphite(EG).This process not only has the advantages of succinct procedure and easy control of reaction conditions,but also effectively separates and recycles lithium from transition metals.The 98.43%of lithium is recovered from leachate when the solid product CoO/CoFe2O4/EG is synthesized as anode material for LIBs.And the product exhibits improved cyclic stability(890 mAh g^(-1) at 1 A g^(-1) after 700 cycles)and superior rate capability(208 mAh g^(-1) at 5 A g^(-1)).The merit of this delicate recycling design can be summarized as three aspects:the utilization of Fe impurity in waste LiCoO_(2),the transformation of waste graphite to EG,and the regeneration of anode material.This approach properly recycles the valuable components of spent LIBs,which introduces an insight into the future recycling.展开更多
Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will tr...Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will transform to other phases, resulting in severe performance degradation. In this study, we investigated the effect of precipitation state achieved by different heat treatments on high temperature tensile and creep behaviors of the Mg-15Gd alloy by comparing the properties of the as-cast, solid-solutioned(T4) and peak-aged(T6) alloys. The results showed that the tensile mechanical properties of the T6 alloy were always highest from room temperature to 300 ℃, in spite of an abnormal strength increase with temperature existed in the T4 alloy. For tensile creep properties, the T6 alloy exhibited the lowest steady creep rate below 235 ℃ while the T4 alloy possessed the best properties above 260 ℃. Microstructure characterization revealed that the transition was caused by the stress-promoted precipitation of β phase in the T4 alloy and rapid phase transformation in the T6 alloy at high temperatures. At 260 ℃, the calculated stress exponent n was 3.1 and 2.8 for the T4 and T6 alloys, respectively, suggesting the creep deformation mechanism was dislocation slip, which was further confirmed by the microstructure after creeping. Our findings can provide new insights into the heat treatment process of Mg-Gd alloys served at high temperatures.展开更多
Background:The development and prognosis of breast cancer are intricately linked to psychological stress.In addition,depression is the most common psychological comorbidity among breast cancer survivors,and reportedly...Background:The development and prognosis of breast cancer are intricately linked to psychological stress.In addition,depression is the most common psychological comorbidity among breast cancer survivors,and reportedly,Fang-Xia-Dihuang decoction(FXDH)can effectively manage depression in such patients.However,its pharmacological and molecular mechanisms remain obscure.Methods:Public databases were used for obtaining active components and related targets.Main active components were further verified by ultra-high-performance liquid chromatography-high-resolution mass spectrometry(UPLC-HRMS).Protein–protein interaction and enrichment analyses were taken to predict potential hub targets and related pathways.Molecule docking was used to understand the interactions between main compounds and hub targets.In addition,an animal model of breast cancer combined with depression was established to evaluate the intervention effect of FXDH and verify the pathways screened by network pharmacology.Results:174 active components of FXDH and 163 intersection targets of FXDH,breast cancer,and depression were identified.Quercetin,methyl ferulate,luteolin,ferulaldehyde,wogonin,and diincarvilone were identified as the principal active components of FXDH.Protein–protein interaction and KEGG enrichment analyses revealed that the phosphoinositide-3-kinase–protein kinase B(PI3K/AKT)and Janus kinase/signal transducer and activator of transcription(JAK2/STAT3)signaling pathways played a crucial role in mediating the efficacy of FXDH for inhibiting breast cancer progression induced by depression.In addition,in vivo experiments revealed that FXDH ameliorated depression-like behavior in mice and inhibited excessive tumor growth in mice with breast cancer and depression.FXDH treatment downregulated the expression of epinephrine,PI3K,AKT,STAT3,and JAK2 compared with the control treatment(p<0.05).Molecular docking verified the relationship between the six primary components of FXDH and the three most important targets,including phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha(PIK3CA),AKT,and STAT3.Conclusion:This study provides a scientific basis to support the clinical application of FXDH for improving depression-like behavior and inhibiting breast cancer progression promoted by chronic stress.The therapeutic effects FXDH may be closely related to the PI3K/AKT and JAK2/STAT3 pathways.This finding helps better understand the regulatory mechanisms underlying the efficacy of FXDH.展开更多
Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmiss...Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmission capacity in single-mode fiber and single-core fiber. However, spectrum fragmentation issue becomes more serious in SDM-EONs compared with simple elastic optical networks(EONs) with single mode fiber or single core fiber. In this paper, multicore virtual concatenation(MCVC) scheme is first proposed considering inter-core crosstalk to solve the spectrum fragmentation issue in SDM-EONs. Simulation results show that the proposed MCVC scheme can achieve better performance compared with the baseline scheme, i.e., single-core virtual concatenation(SCVC) scheme, in terms of blocking probability and spectrum utilization.展开更多
Objective:To evaluate the effectiveness of bloodletting puncture and cupping in relieving breast cancer-related lymphedema.Methods:We conducted a non-randomized controlled study at the Galactophore Department of the 3...Objective:To evaluate the effectiveness of bloodletting puncture and cupping in relieving breast cancer-related lymphedema.Methods:We conducted a non-randomized controlled study at the Galactophore Department of the 3rd Affiliated Hospital of Beijing University of Chinese Medicine from March 2013 to December 2014.Seventy-five patients undergoing treatment for breast cancer-related lymphedema were divided into two groups in accordance with the patients' treatment choices:the treatment group (n =50) underwent bloodletting puncture and cupping every 5 days for 15 min/session (one session per day) combined with exercise training once a day for 30 minutes;the control group (n =25) underwent the same exercise training alone.Evaluation indexes were measured before and after treatment;these included arm circumference (at the wrist crease,10 cm distal to the wrist crease,the elbow crease,and 10 cm distal to the elbow crease)and visual analogue scale (VAS) score for pain.The safety of the treatment was also evaluated.Results:The treatment period was 50 days for all 75 patients.At the end of the treatment period,the mean reduction in arm circumference was 1.21 (0.65) cm the treatment group,and 0.58 (0.78) cm in the control group.Compared with the control group,the treatment group had a significantly greater reduction in arm circumference (P =.03) and a significantly lower VAS score for pain (P =.01).No patient in either group experienced any adverse events.Conclusion:Bloodletting puncture and cupping effectively reduces arm circumference and relieves upper limb pain in patients with breast cancer-related lymphedema.Our results provide sufficient basis for exploring cupping as long-term therapy for managing breast cancer-related lymphedema.展开更多
Surface nanopatterning of semiconductor optoelectronic devices is a powerful way to improve their quality and performance.However,photoelectric devices’inherent stress sensitivity and inevitable warpage pose a huge c...Surface nanopatterning of semiconductor optoelectronic devices is a powerful way to improve their quality and performance.However,photoelectric devices’inherent stress sensitivity and inevitable warpage pose a huge challenge on fabricating nanostructures large-scale.Electric-driven flexible-roller nanoimprint lithography for nanopatterning the optoelectronic wafer is proposed in this study.The flexible nanoimprint template twining around a roller is continuously released and recovered,controlled by the roller’s simple motion.The electric field applied to the template and substrate provides the driving force.The contact line of the template and the substrate gradually moves with the roller to enable scanning and adapting to the entire warped substrate,under the electric field.In addition,the driving force generated from electric field is applied to the surface of substrate,so that the substrate is free from external pressure.Furthermore,liquid resist completely fills in microcavities on the template by powerful electric field force,to ensure the fidelity of the nanostructures.The proposed nanoimprint technology is validated on the prototype.Finally,nano-grating structures are fabricated on a gallium nitride light-emitting diode chip adopting the solution,achieving polarization of the light source.展开更多
Pancreatic ductal adenocarcinoma(PDAC)is highly heterogeneous,making its prognosis prediction difficult.The arachidonic acid(AA)cascade is involved in carcinogenesis.Therefore,the metabolic enzymes of the AA cascade c...Pancreatic ductal adenocarcinoma(PDAC)is highly heterogeneous,making its prognosis prediction difficult.The arachidonic acid(AA)cascade is involved in carcinogenesis.Therefore,the metabolic enzymes of the AA cascade consist of lipoxygenases(LOXs),phospholipase A2s(PLA2s),and cyclooxygenases(COXs)along with their metabolic products,including leukotrienes.Nevertheless,the prognostic potential of AA metabolism-associated PDAC has not been explored.Herein,the mRNA expression patterns and the matching clinical information of individuals with PDAC were abstracted from online data resources.We employed the LASSO Cox regression model to develop a multigene clinical signature in the TCGA queue.The GEO queue and the ICGC queue were employed as the validation queue.There was differential expression of a significant number of AA metabolism-associated genes(56.8%)between PDAC and neighboring nonmalignant tissues in the TCGA queue.Univariate Cox regression demonstrated that 13 of the differentially expressed genes(DEGs)were linked to overall survival(OS)(p<0.05).A 6-gene clinical signature was developed for stratifying the PDAC patients into two risk groups,with the high-risk group patients exhibiting remarkably lower OS than the low-risk group patients(p<0.001 in the TCGA data set and the ICGC queue,and p=0.001 in the GEO data set).The multivariate Cox data revealed the risk score as an independent OS predictor(HR>1,p<0.01).The receiver operating characteristic(ROC)curve verified the predictive potential of our signature.The expression and alteration of the six genes in PDAC were also validated using online databases.Functional analyses demonstrated that immune-linked cascades were enriched,and the immune status was remarkably different between the high-and low-risk groups.In summary,an AA metabolism-associated clinical gene signature can be applied for prognostic estimation in PDAC.展开更多
Background:Nasopharyngeal carcinoma(NPC)is one of the most prevalent cancers in Southeast Asia.Sirtuin 2(SIRT2)is a member of the NAD+-dependent deacetylase family and has been shown to play important roles in numerou...Background:Nasopharyngeal carcinoma(NPC)is one of the most prevalent cancers in Southeast Asia.Sirtuin 2(SIRT2)is a member of the NAD+-dependent deacetylase family and has been shown to play important roles in numerous biological processes.However,Its function in NPC remains uncertain.The primary aim of this study is to clarify the role of SIRT2 in NPC.Methods:In this research,we examined the effect of SIRT2 silencing on NPC cell proliferation and colony formation using vitro NPC cell lines.Co-immunoprecipitation and mass spectrometry was applied to identify SIRT2-interacting proteins in NPC cells.Results:In comparison to nasopharyngeal epithelial NP69 cells,SIRT2 was up-regulated in multiple NPC cell lines,particularly in CNE2 cells.SIRT2 knockdown abrogated CNE2 cell proliferation and colony formation,whereas SIRT2 overexpression promoted HNE1 cell proliferation and colony formation.The SIRT2-interacting proteins were gathered in gene expression and regulation processes including RNA processing and translation.Among the SIRT2-interacting proteins,there were multiple DEAD-box(DDX)family members.Of note,silencing of DDX24 phenocopied the effect of SIRT2 knockdown on NPC growth.Overexpression of DDX24 restored SIRT2-depleted CNE2 cells to proliferative and colony formation.Conclusions:Our study indicates that SIRT2 can interact with DDX24 to enhance NPC growth.The clinical relevance of SIRT2 and DDX24 in NPC warrants further investigation.展开更多
The demand for lightweight,thin electromagnetic interference(EMI)shielding film materials with high shielding effectiveness(SE),excellent mechanical properties,and stability in complex environments is particularly pro...The demand for lightweight,thin electromagnetic interference(EMI)shielding film materials with high shielding effectiveness(SE),excellent mechanical properties,and stability in complex environments is particularly pronounced in the realm of flexible and portable electronic products.Here,we developed an ultra-thin film(CNT@GC)in which the glassy carbon(GC)layer wrapped around and welded carbon nanotubes(CNTs)to form a core-shell network structure,leading to exceptional tensile strength(327.2 MPa)and electrical conductivity(2.87×10^(5) S·m^(−1)).The CNT@GC film achieved EMI SE of 60 dB at a thickness of 2µm after post-acid treatment and high specific SE of 3.49×10^(5) dB·cm^(2)·g^(−1),with comprehensive properties surpassing those of the majority of previous shielding materials.Additionally,the CNT@GC film exhibited Joule heating capability,reaching a surface temperature of 135℃at 3 V with a fast thermal response of about 0.5 s,enabling anti-icing/de-icing functionality.This work presented a methodology for constructing a robust CNT@GC film with high EMI shielding performance and exceptional Joule heating capability,demonstrating immense potential in wearable devices,defense,and aerospace applications.展开更多
We have investigated the displacement cascade irradiation resistance behavior of a cobalt-free high entropy alloy FeMnNiCr using molecular dynamics simulations.The results show that defects in FeMnNiCr form in small c...We have investigated the displacement cascade irradiation resistance behavior of a cobalt-free high entropy alloy FeMnNiCr using molecular dynamics simulations.The results show that defects in FeMnNiCr form in small clusters,and their migration is significantly inhibited,leading to a higher defect recombination rate and a lower number of residual defects compared to Ni.Additionally,FeMnNiCr exhibits a longer thermal peak life and lower thermal conductivity compared to Ni,providing a longer time for defect migration and combining.The migration of defect clusters in FeMnNiCr displays three-dimensional properties,attributed to its high chemical disorder.After prolonged irradiation,defects in FeMnNiCr stabilize as small clusters,whereas point defects in Ni tend to form large defect clusters and evolve into dislocations.Considering the feature of absence of the element cobalt,our results imply that FeMnNiCr has great potential in application in nuclear energies.展开更多
The Triticum-Aegilops complex groups demonstrated high cross-affinity with each other to overcome the barriers of distant hybridization(Loureiro et al.,2023).Distant hybridization involves two distinct yet closely rel...The Triticum-Aegilops complex groups demonstrated high cross-affinity with each other to overcome the barriers of distant hybridization(Loureiro et al.,2023).Distant hybridization involves two distinct yet closely related events:hybridization and genome doubling.Previous studies have indicated that bursts of transposable elements(TEs)can occur as a consequence or concomitant to hybridization or genome duplication(Parisod et al.,2010).This raises an important scientific question regarding how the TEs-rich centromere region copes with genomic shock(McClintock,1984).The Triticum-Aegilops species complexes,particularly in the F1,So,and subsequent early generations resulting from successive selfcrossing,offer an opportunity to investigate whether the centromere environment undergoes reconstruction and the associated mechanisms that maintain genomic stability.展开更多
Improving droplet velocity as much as possible is considered as the key to improving both printing speed and printing distance of the piezoelectric drop-on-demand inkjet printing technology.There are 3 tough and contr...Improving droplet velocity as much as possible is considered as the key to improving both printing speed and printing distance of the piezoelectric drop-on-demand inkjet printing technology.There are 3 tough and contradictory issues that need to be addressed simultaneously,namely,the actuation pressure of the piezoelectric printhead,satellite droplets,and the air resistance,which seems almost impossible to achieve with classical methods.Herein,a novel solution is introduced.By modulating the positive crosstalk effect inside and outside the printhead,self-tuning can be achieved,including self-reinforcing of the actuation pressure,self-restraining of satellite droplets,and self-weakening of the air resistance,thereby greatly improving droplet velocity.Based on these mechanisms,waveform design methods for different inks and printheads are investigated.The results demonstrate that monodisperse droplet jetting with a maximum velocity of 27.53 m/s can be achieved,reaching 3 to 5 times that of the classical method(5 to 8 m/s).Correspondingly,the printing speed and distance can be simultaneously increased by almost 10 times,demonstrating an ability of direct printing on irregular surface.Meanwhile,the compatibility of ink materials is expanded,as the Ohnesorge number and the viscosity of printable inks for the printhead used are increased from 0.36–0.72 to 0.03–1.18 and from 10–12 cp to 1–40.3 cp,respectively,even breaking the traditional limitations of the piezoelectric printing technology(Ohnesorge number of 0.1 to 1;viscosity of 1 to 25 cp).All the above provide a new perspective for improving droplet velocity and may even offer a game-changing choice for expanding the boundaries of the piezoelectric drop-on-demand inkjet printing technology.展开更多
Immunotherapy,a burgeoning field differs from traditional cancer treatments,is revolutionizing oncologic therapeutics.It aims to stimulate the innate and adaptive immune system of a patient to fight against tumor cell...Immunotherapy,a burgeoning field differs from traditional cancer treatments,is revolutionizing oncologic therapeutics.It aims to stimulate the innate and adaptive immune system of a patient to fight against tumor cells.However,low response rate and immune-related adverse effects(irAEs)remain problems during its management.A novel technology using nanomaterials may bring a solution.Various nanoparticles have been investigated as delivery systems to augment cancer therapeutic efficacy in the lab and clinic.In this review,we briefly summarize the connotation of immunotherapy,the application of nanotechnology in cancer,especially focusing on the synergistic effect of nanoplatform-based technology combined with cancer immunotherapy,hoping to make readers a deep insight into this interdisciplinary field.展开更多
Hydrogen energy is a resuscitated clean energy source and its sensitive detection in air is crucial due to its very low explosive limit.Metal oxide decorated with noble metal nanoparticles has been used for the enhanc...Hydrogen energy is a resuscitated clean energy source and its sensitive detection in air is crucial due to its very low explosive limit.Metal oxide decorated with noble metal nanoparticles has been used for the enhancement of gas detection and exhibits superior sensitivity.Understanding the intrinsic mechanism of the detection and the enhancement mechanism is thus becoming a fundamental issue for the further development of novel metal/oxide compound gas-sensing materials.However,the correlation between the microstructural evolution,the charge transport and the complex sensing process has not yet been directly revealed and its atomic mechanism is still debatable.In this study,an Au/WO_(2.7) compound was synthesized and exhibited a strongly enhanced gas sensitivity to many reductive gases,especially H2.Aberration-corrected environmental transmission electron microscopy was used to investigate the atomic-scale microstructural evolution in situ during the reaction between H_(2) and Au/WO_(2.7) compound.Swing and sintering processes of the Au particles on the WO_(2.7) surface were observed under heating and gaseous environments,and no injection of hydrogen atoms was suggested.First principle calculations verified the swing and sintering processes,and they can be explained by the enhancement of H2 sensitivity.展开更多
Various and critical electrocatalytic processes are involved during the redox reactions in the Li-S batteries,which extremely depend on the surface structure and chemical state.Recently,single-atom concept unlocks a r...Various and critical electrocatalytic processes are involved during the redox reactions in the Li-S batteries,which extremely depend on the surface structure and chemical state.Recently,single-atom concept unlocks a route to maximize the use of surface-active atoms,however,further increasing the density of active site is still strictly limited by the inherent structure that single-atoms are only highly-dispersed on substrate.Herein,we provide a viewpoint that an elaborate facet design with singlecrystalline structure engineering can harvest high-density surface active sites,which can significantly boost the electrocatalyst performance for excellent Li-S batteries.Specifically,the single-crystal CoSe_(2)(scCS)exhibits three-types of terminated(011)facet,efficiently obtaining the surface with a high-rich Co^(3+)–Se bond termination,in contrast with lots of surface grain boundaries and dangling bonds in polycrystalline CoSe_(2).Surprisingly,the surface active sites concentration can reach more than 69%.As anticipated,it can provide high-density and high-efficient active sites,enormously suppressing the shuttle effect and improving the reaction kinetics via accelerating the conversion and deposition of polysulfides and Li2S.This surface lattice strategy with element terminated mode is a promising approach for designing electrocatalyst effect-based energy system,not merely for Li-S batteries.展开更多
基金supported by the National Science and Technology Major Project(Grant number J2019-VI-0004-0118)the National Natural Science Foundation of China(Grant number 51771152)+2 种基金the National Key R&D Program of China(Grant number 2018YFB1106800)supported by the Brain Pool Program through the National Research Foundation of Korea(NRF)(Grant No.RS-2023-00304296)supported by the Brain Pool Program through National Research Foundation of Korea(NRF)(Grant No.RS-2023-00222130).
文摘Mg-Gd-Zn based alloys have better creep resistance than other Mg alloys and attract more attention at elevated temperatures.However,the multiple alloying elements and various heat treatment conditions,combined with complex microstructural evolution during creep tests,bring great challenges in understanding and predicting creep behaviors.In this study,we proposed to predict the creep properties and reveal the creep mechanisms of Mg-Gd-Zn based alloys by machine learning.On the one hand,the minimum creep rates were effectively predicted by using a support vector regression model.The complex and nonmonotonic effects of test temperature,test stress,alloying elements,and heat treatment conditions on the creep properties were revealed.On the other hand,the creep stress exponents and creep activation energies were calculated by machine learning to analyze the variation of creep mechanisms,based on which the constitutive equations of Mg-Gd-Zn based alloys were obtained.This study introduces an efficient method to comprehend creep behaviors through machine learning,offering valuable insights for the future design and selection of Mg alloys.
文摘This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employed to identify the damage location and sizes from vibration curvature data.An inverse method is subsequently then used to determine the bending stiffness reduction ratio along a specified direction,enabling the quantification of the delamination severity.The method employed in this study is an extension of the one-dimensional inverse method developed in a previous work of the authors.The applicability of the two-step inverse approach is demonstrated in a simulation analysis and by an experimental study on a cantilever composite plate containing a single delamination.The inverse method is shown to have the capacity to reveal the detailed damage information of delamination within a constrained searching space and can be used to determine the effective flexural stiffness of composite plate structures,even in cases of complex delamination damage.
基金Phased Research Results of the Scientific Research Project of Jilin Provincial Department of Education 2024(Project No.JJKH20240264SK)。
文摘A systematic perspective on agricultural supply chain finance can offer fresh insights into its development.The high-quality development of the agricultural supply chain finance ecosystem is crucial for the comprehensive revitalization of rural areas and the realization of agricultural power.Based on the current state of development of this ecosystem,this paper identifies several bottlenecks,such as insufficient policy and technical support in the macro-environment system,weak incentives for independent circulation within the industrial environment system,and inadequate motivation for stakeholders to participate in the micro-environment system.To address these issues,this paper proposes that the visualization,digitalization,and authenticity characteristics of the“blockchain+Internet of Things”technology architecture can effectively resolve these bottlenecks.Additionally,targeted strategies are suggested to promote the high-quality development of the agricultural supply chain finance ecosystem.
基金This work was supported by National Natural Science Foundation of China(51902347,51822812,51772334,51778627).
文摘Along with the extensive application of energy storage devices,the spent lithium-ion batteries(LIBs)are unquestionably classified into the secondary resources due to its high content of several valuable metals.However,current recycling methods have the main drawback to their tedious process,especially the purification and separation process.Herein,we propose a simplified process to recycle both cathode(LiCoO_(2))and anode(graphite)in the spent LIBs and regenerate newly high-performance anode material,CoO/CoFe2O4/expanded graphite(EG).This process not only has the advantages of succinct procedure and easy control of reaction conditions,but also effectively separates and recycles lithium from transition metals.The 98.43%of lithium is recovered from leachate when the solid product CoO/CoFe2O4/EG is synthesized as anode material for LIBs.And the product exhibits improved cyclic stability(890 mAh g^(-1) at 1 A g^(-1) after 700 cycles)and superior rate capability(208 mAh g^(-1) at 5 A g^(-1)).The merit of this delicate recycling design can be summarized as three aspects:the utilization of Fe impurity in waste LiCoO_(2),the transformation of waste graphite to EG,and the regeneration of anode material.This approach properly recycles the valuable components of spent LIBs,which introduces an insight into the future recycling.
基金supported by the National Natural Science Foundation of China (Grant No. 51771152)the National Key Research and Development Program of China (Grant No. 2018YFB1106800)。
文摘Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will transform to other phases, resulting in severe performance degradation. In this study, we investigated the effect of precipitation state achieved by different heat treatments on high temperature tensile and creep behaviors of the Mg-15Gd alloy by comparing the properties of the as-cast, solid-solutioned(T4) and peak-aged(T6) alloys. The results showed that the tensile mechanical properties of the T6 alloy were always highest from room temperature to 300 ℃, in spite of an abnormal strength increase with temperature existed in the T4 alloy. For tensile creep properties, the T6 alloy exhibited the lowest steady creep rate below 235 ℃ while the T4 alloy possessed the best properties above 260 ℃. Microstructure characterization revealed that the transition was caused by the stress-promoted precipitation of β phase in the T4 alloy and rapid phase transformation in the T6 alloy at high temperatures. At 260 ℃, the calculated stress exponent n was 3.1 and 2.8 for the T4 and T6 alloys, respectively, suggesting the creep deformation mechanism was dislocation slip, which was further confirmed by the microstructure after creeping. Our findings can provide new insights into the heat treatment process of Mg-Gd alloys served at high temperatures.
基金supported by the Xiamen High-Level Health Talents Introduction and Training Project(Xiaweidang 2021-124)the National Natural Science Foundation of China(No.81774319).
文摘Background:The development and prognosis of breast cancer are intricately linked to psychological stress.In addition,depression is the most common psychological comorbidity among breast cancer survivors,and reportedly,Fang-Xia-Dihuang decoction(FXDH)can effectively manage depression in such patients.However,its pharmacological and molecular mechanisms remain obscure.Methods:Public databases were used for obtaining active components and related targets.Main active components were further verified by ultra-high-performance liquid chromatography-high-resolution mass spectrometry(UPLC-HRMS).Protein–protein interaction and enrichment analyses were taken to predict potential hub targets and related pathways.Molecule docking was used to understand the interactions between main compounds and hub targets.In addition,an animal model of breast cancer combined with depression was established to evaluate the intervention effect of FXDH and verify the pathways screened by network pharmacology.Results:174 active components of FXDH and 163 intersection targets of FXDH,breast cancer,and depression were identified.Quercetin,methyl ferulate,luteolin,ferulaldehyde,wogonin,and diincarvilone were identified as the principal active components of FXDH.Protein–protein interaction and KEGG enrichment analyses revealed that the phosphoinositide-3-kinase–protein kinase B(PI3K/AKT)and Janus kinase/signal transducer and activator of transcription(JAK2/STAT3)signaling pathways played a crucial role in mediating the efficacy of FXDH for inhibiting breast cancer progression induced by depression.In addition,in vivo experiments revealed that FXDH ameliorated depression-like behavior in mice and inhibited excessive tumor growth in mice with breast cancer and depression.FXDH treatment downregulated the expression of epinephrine,PI3K,AKT,STAT3,and JAK2 compared with the control treatment(p<0.05).Molecular docking verified the relationship between the six primary components of FXDH and the three most important targets,including phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha(PIK3CA),AKT,and STAT3.Conclusion:This study provides a scientific basis to support the clinical application of FXDH for improving depression-like behavior and inhibiting breast cancer progression promoted by chronic stress.The therapeutic effects FXDH may be closely related to the PI3K/AKT and JAK2/STAT3 pathways.This finding helps better understand the regulatory mechanisms underlying the efficacy of FXDH.
基金supported in part by NSFC project (61571058, 61601052)
文摘Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmission capacity in single-mode fiber and single-core fiber. However, spectrum fragmentation issue becomes more serious in SDM-EONs compared with simple elastic optical networks(EONs) with single mode fiber or single core fiber. In this paper, multicore virtual concatenation(MCVC) scheme is first proposed considering inter-core crosstalk to solve the spectrum fragmentation issue in SDM-EONs. Simulation results show that the proposed MCVC scheme can achieve better performance compared with the baseline scheme, i.e., single-core virtual concatenation(SCVC) scheme, in terms of blocking probability and spectrum utilization.
文摘Objective:To evaluate the effectiveness of bloodletting puncture and cupping in relieving breast cancer-related lymphedema.Methods:We conducted a non-randomized controlled study at the Galactophore Department of the 3rd Affiliated Hospital of Beijing University of Chinese Medicine from March 2013 to December 2014.Seventy-five patients undergoing treatment for breast cancer-related lymphedema were divided into two groups in accordance with the patients' treatment choices:the treatment group (n =50) underwent bloodletting puncture and cupping every 5 days for 15 min/session (one session per day) combined with exercise training once a day for 30 minutes;the control group (n =25) underwent the same exercise training alone.Evaluation indexes were measured before and after treatment;these included arm circumference (at the wrist crease,10 cm distal to the wrist crease,the elbow crease,and 10 cm distal to the elbow crease)and visual analogue scale (VAS) score for pain.The safety of the treatment was also evaluated.Results:The treatment period was 50 days for all 75 patients.At the end of the treatment period,the mean reduction in arm circumference was 1.21 (0.65) cm the treatment group,and 0.58 (0.78) cm in the control group.Compared with the control group,the treatment group had a significantly greater reduction in arm circumference (P =.03) and a significantly lower VAS score for pain (P =.01).No patient in either group experienced any adverse events.Conclusion:Bloodletting puncture and cupping effectively reduces arm circumference and relieves upper limb pain in patients with breast cancer-related lymphedema.Our results provide sufficient basis for exploring cupping as long-term therapy for managing breast cancer-related lymphedema.
基金financed by the National Natural Science Foundation of China(Nos.52025055 and 5227050783)。
文摘Surface nanopatterning of semiconductor optoelectronic devices is a powerful way to improve their quality and performance.However,photoelectric devices’inherent stress sensitivity and inevitable warpage pose a huge challenge on fabricating nanostructures large-scale.Electric-driven flexible-roller nanoimprint lithography for nanopatterning the optoelectronic wafer is proposed in this study.The flexible nanoimprint template twining around a roller is continuously released and recovered,controlled by the roller’s simple motion.The electric field applied to the template and substrate provides the driving force.The contact line of the template and the substrate gradually moves with the roller to enable scanning and adapting to the entire warped substrate,under the electric field.In addition,the driving force generated from electric field is applied to the surface of substrate,so that the substrate is free from external pressure.Furthermore,liquid resist completely fills in microcavities on the template by powerful electric field force,to ensure the fidelity of the nanostructures.The proposed nanoimprint technology is validated on the prototype.Finally,nano-grating structures are fabricated on a gallium nitride light-emitting diode chip adopting the solution,achieving polarization of the light source.
文摘Pancreatic ductal adenocarcinoma(PDAC)is highly heterogeneous,making its prognosis prediction difficult.The arachidonic acid(AA)cascade is involved in carcinogenesis.Therefore,the metabolic enzymes of the AA cascade consist of lipoxygenases(LOXs),phospholipase A2s(PLA2s),and cyclooxygenases(COXs)along with their metabolic products,including leukotrienes.Nevertheless,the prognostic potential of AA metabolism-associated PDAC has not been explored.Herein,the mRNA expression patterns and the matching clinical information of individuals with PDAC were abstracted from online data resources.We employed the LASSO Cox regression model to develop a multigene clinical signature in the TCGA queue.The GEO queue and the ICGC queue were employed as the validation queue.There was differential expression of a significant number of AA metabolism-associated genes(56.8%)between PDAC and neighboring nonmalignant tissues in the TCGA queue.Univariate Cox regression demonstrated that 13 of the differentially expressed genes(DEGs)were linked to overall survival(OS)(p<0.05).A 6-gene clinical signature was developed for stratifying the PDAC patients into two risk groups,with the high-risk group patients exhibiting remarkably lower OS than the low-risk group patients(p<0.001 in the TCGA data set and the ICGC queue,and p=0.001 in the GEO data set).The multivariate Cox data revealed the risk score as an independent OS predictor(HR>1,p<0.01).The receiver operating characteristic(ROC)curve verified the predictive potential of our signature.The expression and alteration of the six genes in PDAC were also validated using online databases.Functional analyses demonstrated that immune-linked cascades were enriched,and the immune status was remarkably different between the high-and low-risk groups.In summary,an AA metabolism-associated clinical gene signature can be applied for prognostic estimation in PDAC.
基金supported by 2017 Guangxi Appropriate Technology Development and Application Project(S2017013)the Project of Guangxi Health Department(Grant Nos.Z20190059 and Z20181011).
文摘Background:Nasopharyngeal carcinoma(NPC)is one of the most prevalent cancers in Southeast Asia.Sirtuin 2(SIRT2)is a member of the NAD+-dependent deacetylase family and has been shown to play important roles in numerous biological processes.However,Its function in NPC remains uncertain.The primary aim of this study is to clarify the role of SIRT2 in NPC.Methods:In this research,we examined the effect of SIRT2 silencing on NPC cell proliferation and colony formation using vitro NPC cell lines.Co-immunoprecipitation and mass spectrometry was applied to identify SIRT2-interacting proteins in NPC cells.Results:In comparison to nasopharyngeal epithelial NP69 cells,SIRT2 was up-regulated in multiple NPC cell lines,particularly in CNE2 cells.SIRT2 knockdown abrogated CNE2 cell proliferation and colony formation,whereas SIRT2 overexpression promoted HNE1 cell proliferation and colony formation.The SIRT2-interacting proteins were gathered in gene expression and regulation processes including RNA processing and translation.Among the SIRT2-interacting proteins,there were multiple DEAD-box(DDX)family members.Of note,silencing of DDX24 phenocopied the effect of SIRT2 knockdown on NPC growth.Overexpression of DDX24 restored SIRT2-depleted CNE2 cells to proliferative and colony formation.Conclusions:Our study indicates that SIRT2 can interact with DDX24 to enhance NPC growth.The clinical relevance of SIRT2 and DDX24 in NPC warrants further investigation.
基金supported by the National Key Research and Development Program of China(No.2020YFA0210702)the National Natural Science Foundation of China(No.51872267)+1 种基金the Natural Science Foundation of Henan Province,China(No.202300410371)Program for Science&Technology Innovation Talents in Universities of Henan Province(No.21HASTIT017).
文摘The demand for lightweight,thin electromagnetic interference(EMI)shielding film materials with high shielding effectiveness(SE),excellent mechanical properties,and stability in complex environments is particularly pronounced in the realm of flexible and portable electronic products.Here,we developed an ultra-thin film(CNT@GC)in which the glassy carbon(GC)layer wrapped around and welded carbon nanotubes(CNTs)to form a core-shell network structure,leading to exceptional tensile strength(327.2 MPa)and electrical conductivity(2.87×10^(5) S·m^(−1)).The CNT@GC film achieved EMI SE of 60 dB at a thickness of 2µm after post-acid treatment and high specific SE of 3.49×10^(5) dB·cm^(2)·g^(−1),with comprehensive properties surpassing those of the majority of previous shielding materials.Additionally,the CNT@GC film exhibited Joule heating capability,reaching a surface temperature of 135℃at 3 V with a fast thermal response of about 0.5 s,enabling anti-icing/de-icing functionality.This work presented a methodology for constructing a robust CNT@GC film with high EMI shielding performance and exceptional Joule heating capability,demonstrating immense potential in wearable devices,defense,and aerospace applications.
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-IDRY-20-008)support provided by the National Natural Science Foundation of China(Grant No.12272378)+1 种基金the High-level Innovation Research Institute Program of Guangdong Province(Grant No.2020B0909010003)the LiYing Program of the Institute of Mechanics,Chinese Academy of Sciences(Grant No.E1Z1011001).
文摘We have investigated the displacement cascade irradiation resistance behavior of a cobalt-free high entropy alloy FeMnNiCr using molecular dynamics simulations.The results show that defects in FeMnNiCr form in small clusters,and their migration is significantly inhibited,leading to a higher defect recombination rate and a lower number of residual defects compared to Ni.Additionally,FeMnNiCr exhibits a longer thermal peak life and lower thermal conductivity compared to Ni,providing a longer time for defect migration and combining.The migration of defect clusters in FeMnNiCr displays three-dimensional properties,attributed to its high chemical disorder.After prolonged irradiation,defects in FeMnNiCr stabilize as small clusters,whereas point defects in Ni tend to form large defect clusters and evolve into dislocations.Considering the feature of absence of the element cobalt,our results imply that FeMnNiCr has great potential in application in nuclear energies.
基金the National Natural Science Foundation of China(31991212)the National Key Research and Development Program of China(2022YFF1003303).
文摘The Triticum-Aegilops complex groups demonstrated high cross-affinity with each other to overcome the barriers of distant hybridization(Loureiro et al.,2023).Distant hybridization involves two distinct yet closely related events:hybridization and genome doubling.Previous studies have indicated that bursts of transposable elements(TEs)can occur as a consequence or concomitant to hybridization or genome duplication(Parisod et al.,2010).This raises an important scientific question regarding how the TEs-rich centromere region copes with genomic shock(McClintock,1984).The Triticum-Aegilops species complexes,particularly in the F1,So,and subsequent early generations resulting from successive selfcrossing,offer an opportunity to investigate whether the centromere environment undergoes reconstruction and the associated mechanisms that maintain genomic stability.
基金the National Key Research and Development Program of China(Grant No.2017YFB1102900)the National Natural Science Foundation of China(Grant Nos.52025055 and 12232013).
文摘Improving droplet velocity as much as possible is considered as the key to improving both printing speed and printing distance of the piezoelectric drop-on-demand inkjet printing technology.There are 3 tough and contradictory issues that need to be addressed simultaneously,namely,the actuation pressure of the piezoelectric printhead,satellite droplets,and the air resistance,which seems almost impossible to achieve with classical methods.Herein,a novel solution is introduced.By modulating the positive crosstalk effect inside and outside the printhead,self-tuning can be achieved,including self-reinforcing of the actuation pressure,self-restraining of satellite droplets,and self-weakening of the air resistance,thereby greatly improving droplet velocity.Based on these mechanisms,waveform design methods for different inks and printheads are investigated.The results demonstrate that monodisperse droplet jetting with a maximum velocity of 27.53 m/s can be achieved,reaching 3 to 5 times that of the classical method(5 to 8 m/s).Correspondingly,the printing speed and distance can be simultaneously increased by almost 10 times,demonstrating an ability of direct printing on irregular surface.Meanwhile,the compatibility of ink materials is expanded,as the Ohnesorge number and the viscosity of printable inks for the printhead used are increased from 0.36–0.72 to 0.03–1.18 and from 10–12 cp to 1–40.3 cp,respectively,even breaking the traditional limitations of the piezoelectric printing technology(Ohnesorge number of 0.1 to 1;viscosity of 1 to 25 cp).All the above provide a new perspective for improving droplet velocity and may even offer a game-changing choice for expanding the boundaries of the piezoelectric drop-on-demand inkjet printing technology.
文摘Immunotherapy,a burgeoning field differs from traditional cancer treatments,is revolutionizing oncologic therapeutics.It aims to stimulate the innate and adaptive immune system of a patient to fight against tumor cells.However,low response rate and immune-related adverse effects(irAEs)remain problems during its management.A novel technology using nanomaterials may bring a solution.Various nanoparticles have been investigated as delivery systems to augment cancer therapeutic efficacy in the lab and clinic.In this review,we briefly summarize the connotation of immunotherapy,the application of nanotechnology in cancer,especially focusing on the synergistic effect of nanoplatform-based technology combined with cancer immunotherapy,hoping to make readers a deep insight into this interdisciplinary field.
基金supported by grants from the National Natural Science Foundation of China(Nos.51988101,91860202 and 51872008)the Beijing Natural Science Foundation(No.Z180014)the“111”project under the DB18015 grant and the Beijing Outstanding Young Scientists Projects(No.BJJWZYJH01201910005018).The authors thank Dr.Dongchang Wu from Thermofisher Scientific Shanghai Nanoport for the useful discussion and assistance with Titan-ETEM and Titan-Themis.
文摘Hydrogen energy is a resuscitated clean energy source and its sensitive detection in air is crucial due to its very low explosive limit.Metal oxide decorated with noble metal nanoparticles has been used for the enhancement of gas detection and exhibits superior sensitivity.Understanding the intrinsic mechanism of the detection and the enhancement mechanism is thus becoming a fundamental issue for the further development of novel metal/oxide compound gas-sensing materials.However,the correlation between the microstructural evolution,the charge transport and the complex sensing process has not yet been directly revealed and its atomic mechanism is still debatable.In this study,an Au/WO_(2.7) compound was synthesized and exhibited a strongly enhanced gas sensitivity to many reductive gases,especially H2.Aberration-corrected environmental transmission electron microscopy was used to investigate the atomic-scale microstructural evolution in situ during the reaction between H_(2) and Au/WO_(2.7) compound.Swing and sintering processes of the Au particles on the WO_(2.7) surface were observed under heating and gaseous environments,and no injection of hydrogen atoms was suggested.First principle calculations verified the swing and sintering processes,and they can be explained by the enhancement of H2 sensitivity.
基金National Natural Science Foundation of China(Nos.52070194,52073309,51902347,51932003,51872115,and 22109135)Science and Technology Development Project of Jilin Province(Nos.YDZJ202101ZYTS165,20210506034ZP,and 20210509051RQ).
文摘Various and critical electrocatalytic processes are involved during the redox reactions in the Li-S batteries,which extremely depend on the surface structure and chemical state.Recently,single-atom concept unlocks a route to maximize the use of surface-active atoms,however,further increasing the density of active site is still strictly limited by the inherent structure that single-atoms are only highly-dispersed on substrate.Herein,we provide a viewpoint that an elaborate facet design with singlecrystalline structure engineering can harvest high-density surface active sites,which can significantly boost the electrocatalyst performance for excellent Li-S batteries.Specifically,the single-crystal CoSe_(2)(scCS)exhibits three-types of terminated(011)facet,efficiently obtaining the surface with a high-rich Co^(3+)–Se bond termination,in contrast with lots of surface grain boundaries and dangling bonds in polycrystalline CoSe_(2).Surprisingly,the surface active sites concentration can reach more than 69%.As anticipated,it can provide high-density and high-efficient active sites,enormously suppressing the shuttle effect and improving the reaction kinetics via accelerating the conversion and deposition of polysulfides and Li2S.This surface lattice strategy with element terminated mode is a promising approach for designing electrocatalyst effect-based energy system,not merely for Li-S batteries.