期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Best Constants for Moser-Trudinger Inequalities,Fundamental Solutions and One-Parameter Representation Formulas on Groups of Heisenberg Type 被引量:8
1
作者 cohn william s. 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第2期375-390,共16页
We derive the explicit fundamental solutions for a class of degenerate(or singular)one- parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the result of Kaplan for the sub-Laplaci... We derive the explicit fundamental solutions for a class of degenerate(or singular)one- parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the result of Kaplan for the sub-Laplacian on H-type groups,which in turn generalizes Folland's result on the Heisenberg group.As an application,we obtain a one-parameter representation formula for Sobolev functions of compact support on H-type groups.By choosing the parameter equal to the homogeneous dimension Q and using the Mose-Trudinger inequality for the convolutional type operator on stratified groups obtained in[18].we get the following theorem which gives the best constant for the Moser- Trudiuger inequality for Sobolev functions on H-type groups. Let G be any group of Heisenberg type whose Lie algebra is generated by m left invariant vector fields and with a q-dimensional center.Let Q=m+2q.Q'=Q-1/Q and Then. with A_Q as the sharp constant,where ▽G denotes the subelliptic gradient on G. This continues the research originated in our earlier study of the best constants in Moser-Trudinger inequalities and fundamental solutions for one-parameter subelliptic operators on the Heisenberg group [18]. 展开更多
关键词 Heisenberg group Groups of Heisenberg type Sobolev inequalities Moser-Trudinger inequalities Best constants One-Parameter representation formulas Fundamental solutions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部