Although studies on the balance between yield and quality of japonica soft super rice are limited, they are crucial for super rice cultivation. In order to investigate the effects of nitrogen application rate on grain...Although studies on the balance between yield and quality of japonica soft super rice are limited, they are crucial for super rice cultivation. In order to investigate the effects of nitrogen application rate on grain yield and rice quality, two japonica soft super rice varieties, Nanjing 9108 (NJ 9108) and Nanjing 5055 (NJ 5055), were used under seven N levels with the application rates of 0, 150, 187.5,225, 262.5, 300, and 337.5 kg ha^-1. With the increasing nitrogen application level, grain yield of both varieties first increased and then decreased. The highest yield was obtained at 300 kg ha^-1. The milling quality and protein content increased, while the appearance quality, amylose content, gel consistency, cooking/eating quality, and rice flour viscosity decreased. Milling was significantly negatively related with the eating/cooking quality whereas the appearance was significantly positively related with cooking/eating quality. These results suggest that nitrogen level significantly affects the yield and rice quality of japonica soft super rice. We conclude that the suitable nitrogen application rate for japonica soft super rice, NJ 9108 and NJ 5055, is 270 kg ha^-1, under which they obtain high yield as well as superior eating/cooking quality.展开更多
There is limited information about the influence of slow or controlled release fertilizer(S/CRF) on rice yield and quality. In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three d...There is limited information about the influence of slow or controlled release fertilizer(S/CRF) on rice yield and quality. In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three different S/CRFs(polymer-coated urea(PCU), sulfur-coated urea(SCU), and urea formaldehyde(UF)) and two fertilization modes(both S/CRF and common urea(CU) as basal fertilizer, S/CRF as basal and CU as tillering fertilizer) on rice yield and quality. CU only was applied separately as control(CK). Results showed that, rice grain yield, chalky kernel rate, chalky area, overall chalkiness, and the content of gliadin, glutenin, and protein, all showed the trends of UF〉PCU〉SCU within the same fertilization mode, and showed the trends of S/CRF as basal and CU as tillering fertilizer〉both S/CRF and CU as basal fertilizer within the same type of S/CRF. In contrast, the contents of amylose, amylopectin, and starch, as well as taste value, and peak and hot viscosity showed trends of SCU〉PCU〉UF, and the trends of both S/CRF and CU as basal fertilizer〉S/CRF as basal and CU as tillering fertilizer. Among S/CRF treatments and fertilization modes, taste values of cooked rice were positively correlated with amylose, amylopectin, and starch contents, as well as gel consistency, peak viscosity, hot viscosity, and cool viscosity, while negatively correlated with globulin, gliadin, glutenin, and protein contents. The types of S/CRF and fertilization modes are important for improving rice yield and quality. Compared to CK, higher yield and similar quality of rice was achieved with UF as basal and CU as tillering fertilizer, and similar yield with improved appearance and eating and cooking quality of rice was achieved with either both UF and CU as basal fertilizer, or PCU as basal and CU as tillering fertilizer.展开更多
There is limited information about the combined effect of shading time and nitrogen (N) on grain filling and quality of rice. Therefore, two japonica super rice cultivars, Nanjing 44 and Ningjing 3, were used to stu...There is limited information about the combined effect of shading time and nitrogen (N) on grain filling and quality of rice. Therefore, two japonica super rice cultivars, Nanjing 44 and Ningjing 3, were used to study the effect of shading time and N level on the characteristics of rice panicle and grain filling as well as the corresponding yield and quality. At a low N level (150 kg N ha^-1, 150N), grain yield decreased (by 21.07-26.07%) under the treatment of 20 days of shading before heading (BH) compared with the no shading (NS) treatment. These decreases occurred because of shortened panicle length, decreased number of primary and secondary branches, as well as the grain number and weight per panicle. At 150N, in the treatment of 20 days of shading after heading (AH), grain yield also decreased (by 9.46-10.60%) due to the lower grain weight per panicle. The interaction of shading and N level had a significant effect on the number of primary and secondary branches. A high level of N (300 kg N ha^-1, 300N) could offset the negative effect of shading on the number of secondary branches and grain weight per panicle, and consequently increased the grain yield in both shading treatments. In superior grains, compared with 150N NS, the time to reach 99% of the grain weight (T99) was shortened by 1.6 to 1.7 days, and the grain weight was decreased by 4.18-5.91% in 150N BH. In 150N AH, the grain weight was 13.39-13.92% lower than that in 150N NS due to the slow mean and the maximum grain-filling rate (GRmean and GRmax). In inferior grains, grain weight and GRmean had a tendency of 150N NS〉150N BH〉150N AH. Under shaded conditions, 300N decreased the grain weight due to lower GReen both in superior and inferior grains. Compared with 150N NS, the milling and appearance qualities as well as eating and cooking quality were all decreased in 150N BH and 150N AH. Shading with the high level of 300N improved the milling quality and decreased the number of chalky rice kernels, but the eating and cooking quality was reduced with increased chalky area and overall chalkiness. Therefore, in the case of short term shading, appropriate N fertilizer could be used to improve the yield and milling quality of rice, but limited application of N fertilizer is recommended to achieve good eating and cooking quality of rice.展开更多
为探明纳米钼和离子钼对水稻产量形成和氮素利用的影响,以南粳9108为试验对象,采用盆栽试验研究了纳米钼和离子钼在0、180、225、270和315 kg N hm^(-2)条件下对水稻的产量、产量构成、干物质积累及氮素积累利用的影响。研究结果表明,...为探明纳米钼和离子钼对水稻产量形成和氮素利用的影响,以南粳9108为试验对象,采用盆栽试验研究了纳米钼和离子钼在0、180、225、270和315 kg N hm^(-2)条件下对水稻的产量、产量构成、干物质积累及氮素积累利用的影响。研究结果表明,纳米钼和离子钼的施用均能有效提高水稻产量。相同氮肥施用水平下,施用纳米钼处理的水稻产量均显著高于施用离子钼处理。水稻生育后期叶面积指数和干物质的积累量显著高于施用离子钼处理。施用纳米钼能够改善水稻生育后期干物质形成,提高抽穗后剑叶SPAD值、光合势和净光合速率,有效促进了水稻生育后期干物质的合成及在籽粒中的积累,最终实现促进水稻增产的目的。相同氮肥施用水平下,离子钼和纳米钼的施用均提高了水稻各器官的氮浓度和氮积累量,并促进了氮肥偏生产力、氮素农学利用率、氮素生理利用率和氮素吸收利用率的提高。展开更多
Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China. However, little information is available related to the characteristi...Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China. However, little information is available related to the characteristics of agronomic performance when comparing inter-sub-specific hybrid rice(IHR) and inbred japonica rice(IJR) under mechanical transplanting method. In 2013 and 2014, field experiments were conducted using IHR(Yongyou 2640) and IJR(Wuyunjing 24) under two cultivation patterns, that is, pot seedlings mechanically transplanted(PS) and carpet seedlings mechanically transplanted(CS). Grain yield, yield components, leaf area index(LAI), leaf area duration(LAD), aboveground biomass, crop growth rate(CGR), nitrogen(N) uptake, and N accumulation were investigated. When compared with CS, PS displayed significantly increased grain yield for both varieties because the larger sink size allowed higher N accumulation from panicle initiation to maturity. Moreover, total aboveground biomass under PS increased significantly compared with that under CS; that is, higher photosynthetic productivity resulted from a greater LAI and higher LAD during the grain filling stage. Higher N absorption capacity in the middle and late growth periods resulted in significantly enhanced total N uptake under PS. When compared with IJR for both treatments, IHR generated 75.2% more grain yield. However, the characteristics creating high yield of IHR were different from those of IJR. Greater aboveground biomass production as well as higher N uptake and accumulation created higher grain yield in IHR than in IJR. These results suggest higher yield could be achieved using PS with IHR, attributing to exploit both yield superiority and productive potential.展开更多
基金the National Key Research Program of China(2016YFD0300503)the National Natural Science Foundation of China(31601246)+2 种基金the Major Independent Innovation Project in Jangsu Province,China(CX(15)1002)the Special Fund for Agro-scientific Research in the Public Interest,China(201303102)the Natural Science Foundation of the Jiangsu Higher Education Institutions,China(16KJB210014)
文摘Although studies on the balance between yield and quality of japonica soft super rice are limited, they are crucial for super rice cultivation. In order to investigate the effects of nitrogen application rate on grain yield and rice quality, two japonica soft super rice varieties, Nanjing 9108 (NJ 9108) and Nanjing 5055 (NJ 5055), were used under seven N levels with the application rates of 0, 150, 187.5,225, 262.5, 300, and 337.5 kg ha^-1. With the increasing nitrogen application level, grain yield of both varieties first increased and then decreased. The highest yield was obtained at 300 kg ha^-1. The milling quality and protein content increased, while the appearance quality, amylose content, gel consistency, cooking/eating quality, and rice flour viscosity decreased. Milling was significantly negatively related with the eating/cooking quality whereas the appearance was significantly positively related with cooking/eating quality. These results suggest that nitrogen level significantly affects the yield and rice quality of japonica soft super rice. We conclude that the suitable nitrogen application rate for japonica soft super rice, NJ 9108 and NJ 5055, is 270 kg ha^-1, under which they obtain high yield as well as superior eating/cooking quality.
基金the National Key R&D Program of China (2016YFD0300503)the Key Research Program of Jiangsu Province, China (BE2016344)+3 种基金the National Rice Industry Technology System, China (CARS01-27)the National Nature Science Foundation of China (31701350)the Program for Scientific Elitists of Yangzhou University, Chinaa Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘There is limited information about the influence of slow or controlled release fertilizer(S/CRF) on rice yield and quality. In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three different S/CRFs(polymer-coated urea(PCU), sulfur-coated urea(SCU), and urea formaldehyde(UF)) and two fertilization modes(both S/CRF and common urea(CU) as basal fertilizer, S/CRF as basal and CU as tillering fertilizer) on rice yield and quality. CU only was applied separately as control(CK). Results showed that, rice grain yield, chalky kernel rate, chalky area, overall chalkiness, and the content of gliadin, glutenin, and protein, all showed the trends of UF〉PCU〉SCU within the same fertilization mode, and showed the trends of S/CRF as basal and CU as tillering fertilizer〉both S/CRF and CU as basal fertilizer within the same type of S/CRF. In contrast, the contents of amylose, amylopectin, and starch, as well as taste value, and peak and hot viscosity showed trends of SCU〉PCU〉UF, and the trends of both S/CRF and CU as basal fertilizer〉S/CRF as basal and CU as tillering fertilizer. Among S/CRF treatments and fertilization modes, taste values of cooked rice were positively correlated with amylose, amylopectin, and starch contents, as well as gel consistency, peak viscosity, hot viscosity, and cool viscosity, while negatively correlated with globulin, gliadin, glutenin, and protein contents. The types of S/CRF and fertilization modes are important for improving rice yield and quality. Compared to CK, higher yield and similar quality of rice was achieved with UF as basal and CU as tillering fertilizer, and similar yield with improved appearance and eating and cooking quality of rice was achieved with either both UF and CU as basal fertilizer, or PCU as basal and CU as tillering fertilizer.
基金grants from the National Key Technology R&D Program of China (2016YFD0300503)the Key Research Program of Jiangsu Province, China (BE2016344)+3 种基金the earmarked fund for China Agriculture Research System (CARS-01-27)the National Nature Science Foundation of China (31701350)the Program for Scientific Elitists of Yangzhou University, Chinafunded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘There is limited information about the combined effect of shading time and nitrogen (N) on grain filling and quality of rice. Therefore, two japonica super rice cultivars, Nanjing 44 and Ningjing 3, were used to study the effect of shading time and N level on the characteristics of rice panicle and grain filling as well as the corresponding yield and quality. At a low N level (150 kg N ha^-1, 150N), grain yield decreased (by 21.07-26.07%) under the treatment of 20 days of shading before heading (BH) compared with the no shading (NS) treatment. These decreases occurred because of shortened panicle length, decreased number of primary and secondary branches, as well as the grain number and weight per panicle. At 150N, in the treatment of 20 days of shading after heading (AH), grain yield also decreased (by 9.46-10.60%) due to the lower grain weight per panicle. The interaction of shading and N level had a significant effect on the number of primary and secondary branches. A high level of N (300 kg N ha^-1, 300N) could offset the negative effect of shading on the number of secondary branches and grain weight per panicle, and consequently increased the grain yield in both shading treatments. In superior grains, compared with 150N NS, the time to reach 99% of the grain weight (T99) was shortened by 1.6 to 1.7 days, and the grain weight was decreased by 4.18-5.91% in 150N BH. In 150N AH, the grain weight was 13.39-13.92% lower than that in 150N NS due to the slow mean and the maximum grain-filling rate (GRmean and GRmax). In inferior grains, grain weight and GRmean had a tendency of 150N NS〉150N BH〉150N AH. Under shaded conditions, 300N decreased the grain weight due to lower GReen both in superior and inferior grains. Compared with 150N NS, the milling and appearance qualities as well as eating and cooking quality were all decreased in 150N BH and 150N AH. Shading with the high level of 300N improved the milling quality and decreased the number of chalky rice kernels, but the eating and cooking quality was reduced with increased chalky area and overall chalkiness. Therefore, in the case of short term shading, appropriate N fertilizer could be used to improve the yield and milling quality of rice, but limited application of N fertilizer is recommended to achieve good eating and cooking quality of rice.
文摘为探明纳米钼和离子钼对水稻产量形成和氮素利用的影响,以南粳9108为试验对象,采用盆栽试验研究了纳米钼和离子钼在0、180、225、270和315 kg N hm^(-2)条件下对水稻的产量、产量构成、干物质积累及氮素积累利用的影响。研究结果表明,纳米钼和离子钼的施用均能有效提高水稻产量。相同氮肥施用水平下,施用纳米钼处理的水稻产量均显著高于施用离子钼处理。水稻生育后期叶面积指数和干物质的积累量显著高于施用离子钼处理。施用纳米钼能够改善水稻生育后期干物质形成,提高抽穗后剑叶SPAD值、光合势和净光合速率,有效促进了水稻生育后期干物质的合成及在籽粒中的积累,最终实现促进水稻增产的目的。相同氮肥施用水平下,离子钼和纳米钼的施用均提高了水稻各器官的氮浓度和氮积累量,并促进了氮肥偏生产力、氮素农学利用率、氮素生理利用率和氮素吸收利用率的提高。
基金the National Key Research Program of China(2016YFD0300503)the Special Fund for Agro-scientific Research in the Public Interest,China(201303102)+2 种基金the Key Research Program of Jiangsu Province,China(BE2016344)the Major Independent Innovation Project in Jiangsu Province,China(CX(15)1002)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China. However, little information is available related to the characteristics of agronomic performance when comparing inter-sub-specific hybrid rice(IHR) and inbred japonica rice(IJR) under mechanical transplanting method. In 2013 and 2014, field experiments were conducted using IHR(Yongyou 2640) and IJR(Wuyunjing 24) under two cultivation patterns, that is, pot seedlings mechanically transplanted(PS) and carpet seedlings mechanically transplanted(CS). Grain yield, yield components, leaf area index(LAI), leaf area duration(LAD), aboveground biomass, crop growth rate(CGR), nitrogen(N) uptake, and N accumulation were investigated. When compared with CS, PS displayed significantly increased grain yield for both varieties because the larger sink size allowed higher N accumulation from panicle initiation to maturity. Moreover, total aboveground biomass under PS increased significantly compared with that under CS; that is, higher photosynthetic productivity resulted from a greater LAI and higher LAD during the grain filling stage. Higher N absorption capacity in the middle and late growth periods resulted in significantly enhanced total N uptake under PS. When compared with IJR for both treatments, IHR generated 75.2% more grain yield. However, the characteristics creating high yield of IHR were different from those of IJR. Greater aboveground biomass production as well as higher N uptake and accumulation created higher grain yield in IHR than in IJR. These results suggest higher yield could be achieved using PS with IHR, attributing to exploit both yield superiority and productive potential.