期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
3D FEM Simulation of Milling Force in Corner Machining Process 被引量:2
1
作者 caixu yue Cui HUANG +2 位作者 Xianli LIU Shengyu HAO Jun LIU 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期286-293,共8页
To optimize milling force and machining accuracy quality in corner milling process, the changing law of milling force is revealed by Finite Element Method(FEM). Based on DEFORM software a serial of 3D FEM models for... To optimize milling force and machining accuracy quality in corner milling process, the changing law of milling force is revealed by Finite Element Method(FEM). Based on DEFORM software a serial of 3D FEM models for corner milling process are devloped. Tool curved trajectory is achieved by establishing accurate relationship of tool location with milling time. Adaptive remeshing technique and iterative algorithm are adopted to ensure convergence of FEM model. Component force characteristics are revealed by analyzing FEM simulation results. It indicates that the milling force in Y direction becomes negative comparing with forces in X and Z direction. Magnitude of forces in three directions decreases with increase of spindle speed, while it increases with increase of milling feedrate. The simulation results for cutting force are in good agreement with those obtained from experiment. The FEM simulation model is first successfully established for corner milling process in this study, and the results provide a guide for optimizing cutting parameters in cutting process. 展开更多
关键词 FEM simulation Corner milling Hardened steel Milling force
下载PDF
Influences of Tool Wear on Residual Stress and Fatigue Life of Workpiece in Hard Cutting Process 被引量:1
2
作者 caixu yue Lei Zhu +3 位作者 Lei Feng Jun Liu Shengyu Hao Guangxu Ren 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第5期61-69,共9页
Tool wear has an important influence on the residual stress distribution on the machined surface.Also,it will influence the fatigue life of finished workpiece. In this research,the hard turning process of hardened die... Tool wear has an important influence on the residual stress distribution on the machined surface.Also,it will influence the fatigue life of finished workpiece. In this research,the hard turning process of hardened die steel Cr12 MoV was studied by using PCBN tool with considering tool wear. Based on the numerical treatment of residual stress,the dispersion and distribution curves of different tool wear were fitted,and the influence mechanism of tool wear on the residual stress distribution of machined surface was analyzed.Based on the theory of fatigue mechanics and mathematical statistics,the mathematical model for difference of stress dispersion and fatigue life was established. The rotating and bending tests were carried out on the standard parts after cutting process for the workpiece. The influence of tool wear on fatigue life was revealed by fracture surface morphology and fatigue life study. The results provide theoretical support for control of residual stress and the fatigue property of the machined surface under the actual working conditions. 展开更多
关键词 hard TURNING PROCESS tool wear surface RESIDUAL STRESS RESIDUAL STRESS dispersion fatigue life
下载PDF
Research on Surface Roughness of Supersonic Vibration Auxiliary Side Milling for Titanium Alloy
3
作者 Xuetao Wei caixu yue +3 位作者 Desheng Hu Xianli Liu Yunpeng Ding Steven Y.Liang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期100-111,共12页
The processed surface contour shape is extracted with the finite element simulation software.The difference value of contour shape change is used as the parameters of balancing surface roughness to construct finite el... The processed surface contour shape is extracted with the finite element simulation software.The difference value of contour shape change is used as the parameters of balancing surface roughness to construct finite element model of supersonic vibration milling in cutting stability domain.The surface roughness trial scheme is designed in the orthogonal test design method to analyze the surface roughness test result in the response surface methodology.The surface roughness prediction model is established and optimized.Finally,the surface roughness finite element simulation prediction model is verified by experiments.The research results show that,compared with the experiment results,the error range of the finite element simulation model is 27.5%–30.9%,and the error range of the empirical model obtained by the response surface method is between 4.4%and 12.3%.So,the model in this paper is accurate and will provide the theoretical basis for the optimization study of the auxiliary milling process of supersonic vibration. 展开更多
关键词 Side milling Axial vibration Ultrasonic milling Finite element simulation Linear regression Surface roughness
下载PDF
Conventional and micro scale finite element modeling for metal cutting process:A review 被引量:2
4
作者 Le WANG caixu yue +3 位作者 Xianli LIU Ming LI Yongshi XU Steven Y.LIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期199-232,共34页
The metal cutting process is accompanied by complex stress field,strain field,temperature field.The comprehensive effects of process parameters on chip morphology,cutting force,tool wear and residual stress are comple... The metal cutting process is accompanied by complex stress field,strain field,temperature field.The comprehensive effects of process parameters on chip morphology,cutting force,tool wear and residual stress are complex and inter-connected.Finite element method(FEM)is considered as an effective method to predict process variables and reveal microscopic physical phenomena in the cutting process.Therefore,the finite element(FE)simulation is used to research the conventional and micro scale cutting process,and the differences in the establishment of process variable FE simulation models are distinguished,thereby improving the accuracy of FE simulation.The reliability and effectiveness of FE simulation model largely depend on the accuracy of the simulation method,constitutive model,friction model,damage model in describing mesh element,the dynamic mechanical behavior of materials,the tool-chip-workpiece contact process and the chip formation mechanism.In this paper,the FE models of conventional and micro process variables are comprehensively and up-to-date reviewed for different materials and machining methods.The purpose is to establish a FE model that is more in line with the real cutting conditions,and to provide the possibility for optimizing the cutting process variables.The development direction of FE simulation of metal cutting process is discussed,which provides guidance for future cutting process modeling. 展开更多
关键词 Conventional and micro scale Finite element simulation Metal cutting process Micro cutting MODELING
原文传递
Drilling process of indexable drill bit based on Coupled Eulerian-Lagrangian method:A simulation study
5
作者 Desheng HU caixu yue +4 位作者 Xianli LIU Zhipeng JIANG Yongshi XU Junhui LU Steven Y.LIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第11期477-492,共16页
42CrMo steel has the characteristics of high strength,high wear resistance,high impact resistance,and fatigue resistance.Therefore,drilling 42CrMo steel has always been a challenging task.The indexable drill bit has t... 42CrMo steel has the characteristics of high strength,high wear resistance,high impact resistance,and fatigue resistance.Therefore,drilling 42CrMo steel has always been a challenging task.The indexable drill bit has the advantages of high processing efficiency and low processing cost and has been widely used in the field of aerospace hole processing.To better understand the machining mechanism of the indexable drill bit,this paper uses the Coupled EulerianLagrangian method(CEL)to simulate the three-dimensional drilling model for the first time.The simulation results of the drilling force obtained by the CEL method and Lagrangian method are compared with the experimental results.It is verified that the CEL method is easy to converge and can avoid the problem of program interruption caused by mesh distortion,and the CEL simulation value is more consistent with the actual value.Secondly,the simulation results of cutting force and blade cutting edge node temperature under different process parameters are extracted.The variation of time domain cutting force,frequency domain cutting force and tool temperature with process parameters are obtained.This study provides a new method for the prediction of cutting performance and the optimization of process parameters of indexable drills. 展开更多
关键词 42CrMo steel Coupled EulerianLagrangian method Indexable drill bit Drilling force Process parameters
原文传递
A review of chatter vibration research in milling 被引量:26
6
作者 caixu yue Haining GAO +2 位作者 Xianli LIU Steven Y.LIANG Lihui WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期215-242,共28页
Chatter is a self-excited vibration of parts in machining systems. It is widely present across a range of cutting processes, and has an impact upon both efficiency and quality in production processing. A great deal of... Chatter is a self-excited vibration of parts in machining systems. It is widely present across a range of cutting processes, and has an impact upon both efficiency and quality in production processing. A great deal of research has been dedicated to the development of technologies that are able to predict and detect chatter. The purpose of these technologies is to facilitate the avoidance of chatter during cutting processes, which leads to better surface precision, higher productivity,and longer tool life. This paper summarizes the current state of the art in research regarding the problems of how to arrive at stable chatter prediction, chatter identification, and chatter control/-suppression, with a focus on milling processes. Particular focus is placed on the theoretical relationship between cutting chatter and process damping, tool runout, and gyroscopic effect, as well as the importance of this for chatter prediction. The paper concludes with some reflections regarding possible directions for future research in this field. 展开更多
关键词 Chatter Gyroscopic EFFECTS MILLING PROCESS DAMPING TOOL RUNOUT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部