BACKGROUND Gastric cancer(GC)is a relatively frequent clinical phenomenon,referring to ma-lignant tumors emerging in the gastric mucosal epithelial cells.It has a high mor-bidity and mortality rate,posing a significan...BACKGROUND Gastric cancer(GC)is a relatively frequent clinical phenomenon,referring to ma-lignant tumors emerging in the gastric mucosal epithelial cells.It has a high mor-bidity and mortality rate,posing a significant threat to the health of patients.Hence,how to diagnose and treat GC has become a heated topic in this research field.AIM To discuss the effectiveness and safety of nab-paclitaxel in combination with oxaliplatin and S-1(P-SOX)for the treatment of GC,and to analyze the factors that may influence its outcomes.METHODS A total of 219 eligible patients with advanced GC,who were treated at Qinghai University Affiliated Hospital Gastrointestinal Oncology between January 2018 and March 2020,were included in the study.Among them,149 patients received SOX regimen and 70 patients received S-1 regimen.All patients underwent both preoperative and postoperative chemotherapy consisting of 2-4 cycles each,totaling 6-8 cycles,along with parallel D2 radical surgical treatment.The patients were followed up for a period of three years or until reaching the event endpoint.RESULTS The short-term and long-term efficacy of the P-SOX group was significantly higher than that of the SOX group,and the safety was manageable.Cox multivariate analysis revealed that progression-free survival was associated with perioperative chemotherapy efficacy,tumor diameter≤2cm,high differentiation,and early cTNM(T stands for invasion depth;N stands for node metastasis;M stands for distant invasion)stage.CONCLUSION In comparison to the SOX regimen,the P-SOX regimen demonstrates improved short-term and long-term efficacy with tolerable adverse reactions.It is anticipated that the P-SOX regimen will emerge as a first-line chemotherapy option for GC.Patients with GC who receive effective perioperative chemotherapy(Response Evaluation Criteria in Solid Tumors 1.1,Tumor Regression Grade),have a tumor diameter≤2cm,exhibit high degree of differentiation,and are at an early cTNM stage show better prognosis.展开更多
Objectives The combined use of bedaquiline and delamanid(BDQ-DLM)is limited by an increased risk of prolonging the QTc interval.We retrospectively evaluated patients who received DLM/BDQcontaining regimens at a TB-spe...Objectives The combined use of bedaquiline and delamanid(BDQ-DLM)is limited by an increased risk of prolonging the QTc interval.We retrospectively evaluated patients who received DLM/BDQcontaining regimens at a TB-specialized hospital.We aimed to present clinical efficacy and safety data for Chinese patients.Methods This case-control study included patients with multidrug-resistant tuberculosis(MDR-TB)treated with BDQ alone or BDQ plus DLM.Results A total of 96 patients were included in this analysis:64 in the BDQ group and 32 in the BDQ+DLM group.Among the 96 patients with positive sputum culture at the initiation of BDQ alone or BDQ combined with DLM,46 patients(71.9%)in the BDQ group and 29(90.6%)in the BDQ-DLM group achieved sputum culture conversion during treatment.The rate of sputum culture conversion did not differ between the two groups.The time to sputum culture conversion was significantly shorter in the BDQ-DLM group than in the BDQ group.The most frequent adverse event was QTc interval prolongation;however,the frequency of adverse events did not differ between the groups.Conclusion In conclusion,our results demonstrate that the combined use of BDQ and DLM is efficacious and tolerable in Chinese patients infected with MDR-TB.Patients in the BDQ-DLM group achieved sputum culture conversion sooner than those in the BDQ group.展开更多
Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.Howeve...Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.However,the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment processes.Herein,we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys,and a wire arc additively manufactured(WAAM)Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification.Through this method,the optimal microstructures(fine grain,controllable amount of long period stacking ordered(LPSO)structure and nano-scaleβ'precipitates)and the corresponding customized heat treatment processes(520°C/30 min+200°C/48 h)were obtained to achieve a good combination of a high strength of 364 MPa and a considerable elongation of 6.2%,which surpassed those of other state-of-the-art WAAM-processed Mg alloys.Furthermore,we evidenced that the favorable effect of the undeformed LPSO structures on the mechanical properties was emphasized only when the nano-scaleβ'precipitates were present.It is believed that the findings promote the application of magnesium alloy workpieces and help to establish customized heat treatment processes for additively manufactured materials.展开更多
It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,th...It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,the LZQT600-3 DIBs with the diameter of 145 mm were prepared by the horizontal continuous casting(HCC)process,that is,LZQT600-3 HCCDIBs.The microstructure and room temperature tensile properties of different sections[left-edge(surface layer),left-1/2R(left half of the radius),and the center of the HCCDIBs]were studied.The results show that the spheroidization of LZQT600-3 HCCDIBs matrix from the left-edge,left-1/2R to the center is at nodulizing grade II and above.As the cooling rate gradually decreases from surface to the center of the HCCIBs,the number of spheroidized graphite is gradually reduced,the size is gradually increased,the shape factor is decreased,and the pearlite content and lamellate spacing are increased.Along the horizontal direction of the section,the hardness of the material is distributed symmetrically around the center of the HCCDIBs.In the vertical direction,the hardness distribution in the center of the HCCDIBs is asymmetrical due to the gravity during the solidification process.Therefore,the microstructure in the lower part of the section solidifies relatively quickly.The left-edge has the best tensile mechanical properties,and the ultimate tensile strength,yield tensile strength and elongation are 597.3 MPa,418.5 MPa and 9.6%,respectively.The tensile fracture belongs to the ductile-brittle hybrid fracture.The comprehensive performances of LZQT600-3 HCCDIBs meet the actual application requirements of ultra-high pressure hydraulic plunger pump cylinder.展开更多
Clinical pathway (CP) is a medical management tool made by a group of medical specialists and specialized for certain diseases. It has been proved that CP was an efficient way to optimize the hospitalization managemen...Clinical pathway (CP) is a medical management tool made by a group of medical specialists and specialized for certain diseases. It has been proved that CP was an efficient way to optimize the hospitalization management and control medical cost. In this paper, we focused on the effect of CP in the patients with acute complicated appendicitis via total duration of hospitalization, hospitalization time before operation, total cost of hospitalization and drug expenditure. From March 2014 to March 2015, the patients with conditions of appendicitis in Three Gorges Central Hospital of Wanzhou, Chongqing, were divided into CP group and non path control group to analyze the effect of the application of CP. Our data showed that there were no significant differences between two groups of patients in total duration of hospitalization, hospitalization time before operation, total cost of hospitalization and drug expenditure. The implementation of CP neither decreased the time of patients in hospital nor the total hospitalization cost. Besides, application of CP for acute appendicitis patients should distinguish between simple appendicitis and complicated appendicitis, simple appendectomy patients implement CP is beneficial, and patients with complicated appendicitis did not come from the benefit.展开更多
Magnesium and its alloys,as a promising class of materials,is popular in lightweight application and biomedical implants due to their low density and good biocompatibility.Additive manufacturing(AM)of Mg and its alloy...Magnesium and its alloys,as a promising class of materials,is popular in lightweight application and biomedical implants due to their low density and good biocompatibility.Additive manufacturing(AM)of Mg and its alloys is of growing interest in academia and industry.The domain-by-domain localized forming characteristics of AM leads to unique microstructures and performances of AM-process Mg and its alloys,which are different from those of traditionally manufactured counterparts.However,the intrinsic mechanisms still remain unclear and need to be in-depth explored.Therefore,this work aims to discuss and analyze the possible underlying mechanisms regarding defect appearance and elimination,microstructure formation and evolution,and performance improvement,based on presenting a comprehensive and systematic review on the relationship between process parameters,forming quality,microstructure characteristics and resultant performances.Lastly,some key perspectives requiring focus for further progression are highlighted to promote development of AM-processed Mg and its alloys and accelerate their industrialization.展开更多
Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume ch...Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume change, which results in low reversible capacity and poor cycling stability.Herein, reduced graphene oxide-wrapped FeS_2(FeS_2/rGO)composite was fabricated to achieve excellent electrochemical performance via a facile two-step method. The introduction of rGO effectively improved the conductivity,BET surface area, and structural stability of the FeS_2 active material, thus endowing it with high specific capacity, good rate capability, as well as excellent cycling stability. Electrochemical measurements show that the FeS_2/rGO composite had a high initial discharge capacity of 1263.2 mAh gg^(-1) at 100 mA gg^(-1) and a high discharge capacity of 344 mAh gg^(-1) at 10 A gg^(-1), demonstrating superior rate performance. After 100 cycles at 100 mA gg^(-1),the discharge capacity remained at 609.5 mAh g^(-1), indicating the excellent cycling stability of the FeS_2/rGO electrode.展开更多
Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc ...Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc additive manufacturing(WAAM) process of Mg alloy.The thermal couples were used to monitor the thermal history during the WAAM process. Additionally, the effect of different IDTs on the microstructure characteristics and resultant mechanical properties of WAAM-processed Mg alloy thin-wall were investigated. The results showed that the stable temperature of the thin-wall component could reach 290 ℃ at IDT=0s, indicating that the thermal accumulation effect was remarkable. Consequently, unimodal coarse grains with an average size of 39.6 μm were generated, and the resultant room-temperature tensile property was poor. With the IDT extended to 60s, the thermal input and thermal dissipation reached a balance, and the stable temperature was only 170 ℃, closing to the initial temperature of the substrate. A refined grain structure with bimodal size distribution was obtained. The remelting zone had fine grains with the size of 15.2 μm, while the arc zone owned coarse grains with the size of 24.5 μm.The alternatively distributed coarse and fine grains lead to the elimination of strength-ductility trade-off. The ultimate tensile strength and elongation of the samples at IDT=60s are increased by 20.6 and 75.0% of those samples at IDT=0s, respectively. The findings will facilitate the development of additive manufacturing processes for advanced Mg alloys.展开更多
Based on wire arc additive manufacturing(WAAM)technology,AZ31 magnesium alloy in bulk was successfully fabricated,and its microstructure as well as mechanical properties in different planes were observed and analyzed....Based on wire arc additive manufacturing(WAAM)technology,AZ31 magnesium alloy in bulk was successfully fabricated,and its microstructure as well as mechanical properties in different planes were observed and analyzed.The AZ31 magnesium alloy has a similar microstructure in the building direction(Z)and travel direction(X),both of which are equiaxed grains.There are heat-affected zones(HAZs)with coarse grains below the fusion line.The second phase is primarily composed of the Mg17Al12 phase,which is evenly distributed in different directions.In addition,the residual stress varies in different directions.There is no significant difference in the hardness of the AZ31 alloy along the Z and X directions,with the average hardness being 68.4 HV and 67.9 HV,respectively.Even though the specimens’ultimate tensile strength along the travel direction is higher in comparison to that along the building direction,their differences in elongation and yield strength are smaller,indicating that the anisotropy of the mechanical properties of the material is small.展开更多
Hevea brasiliensis is one of the important economic trees with a great economic value for natural rubber production.Symbiosis between roots of H.brasiliensis and arbuscular mycorrhizal fungi(AMF)is widely recognized,a...Hevea brasiliensis is one of the important economic trees with a great economic value for natural rubber production.Symbiosis between roots of H.brasiliensis and arbuscular mycorrhizal fungi(AMF)is widely recognized,and can provide a range of benefits for both of them.Hainan Island harbors is one of the largest plantations of H.brasiliensis in China,whereas the information regarding the diversity of AMF in the rhizosphere of H.brasiliensis on this island is scarce.The diversity of AMF species in the rhizosphere of rubber tree plantations in Hainan was investigated in this study.A total of 72 soil samples from the rhizosphere of H.brasiliensis RY7-33-97 were collected.These included 48 samples from plantations in 11 cities or counties that had been planted for 15–25 years,and 24 samples from a demonstrating plantation site of the China National Rubber Tree Germplasm Repository representing plantations with tree plantation ages from one to 40 year-old.Collectively,a total of 68 morphotypes of AMF,belonging to the genera of Archaeospora(1),Glomus(43),Acaulospora(18),Entrophospora(3),Scutellospora(2),and Gigaspora(1)were isolated and identified,as per morphological characteristics of spores presented in the collected soil samples.Glomus(Frequency,F=100%)and Acaulospora(F=100%)were the predominant genera,and A.mellea(F=63.9%)and A.scrobiculata(F=63.9%)were the predominant species.AMF species differed significantly among collected sites in spore density(SD,290.7–2,186.7 spores per 100 g dry soil),species richness(SR,4.3–12.3),and Shannon-Weiner index of diversity(H,1.24–2.24).SD was negatively correlated with available phosphorus level in the soil;SR was positively correlated with soil total phosphorus content;and H was positively correlated with levels of soil organic matter and total phosphorus.Similarly,SD,SR,and H were also correlated with H.brasiliensis plantation age,and an increasing trend was observed up to 40 years.These results suggest that the AMF community was complex and ubiquitous in the island plantation ecosystems of H.brasiliensis,with high species abundance and diversity.Soil factors and plantation age dramatically affected AMF diversity at species level.展开更多
Grain boundary directed spinodal decomposition has a substantial effect on the microstructure evolution and properties of polycrystalline alloys.The morphological selection mechanism of spinodal decomposition at grain...Grain boundary directed spinodal decomposition has a substantial effect on the microstructure evolution and properties of polycrystalline alloys.The morphological selection mechanism of spinodal decomposition at grain boundaries is a major challenge to reveal,and remains elusive so far.In this work,the effect of grain boundaries on spinodal decomposition is investigated by using the phase-field model.The simulation results indicate that the spinodal morphology at the grain boundary is anisotropic bicontinuous microstructures different from the isotropic continuous microstructures of spinodal decomposition in the bulk phase.Moreover,at grain boundaries with higher energy,the decomposed phases are alternatingα/βlayers that are parallel to the grain boundary.On the contrary,alternatingα/βlayers are perpendicular to the grain boundary.展开更多
The debate about the safety of genetically modified foods has never stopped,and different consumers have different judgments. On the basis of literature research,this paper designs the corresponding questionnaire for ...The debate about the safety of genetically modified foods has never stopped,and different consumers have different judgments. On the basis of literature research,this paper designs the corresponding questionnaire for empirical analysis. With the college students as the object of study,this paper explores the differences in perceived genetically modified food risk by the college students with different majors,as well as the differences in the information processing mode adopted by the college students with different majors,and the differences in the perceived risk after adopting different information processing mode. The results show that there are significant differences in the perceived genetically modified food risk among the college students with different majors,the economics students have the highest average perceived risk; there are also significant differences in the information processing mode adopted by the college students with different majors,and the perceived risk is different when using the heuristic information processing mode.展开更多
Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them.Various mechanisms deregulate adhesion molecules in cancer,enabling tumor c...Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them.Various mechanisms deregulate adhesion molecules in cancer,enabling tumor cells to proliferate without restraint,invade through tissue boundaries,escape from immune surveillance,and survive in the tumor microenvironment.Recent studies have revealed that adhesion molecules also drive angiogenesis,reshape metabolism,and are involved in stem cell self-renewal.In this review,we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment,as well as the therapeutic strategies targeting adhesion molecules.These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.展开更多
Cancer is one of the leading causes of human death worldwide.Treatment of cancer exhausts significant medical resources,and the morbidity and mortality caused by cancer is a huge social burden.Cancer has therefore bec...Cancer is one of the leading causes of human death worldwide.Treatment of cancer exhausts significant medical resources,and the morbidity and mortality caused by cancer is a huge social burden.Cancer has therefore become a serious economic and social problem shared globally.As an increasingly prevalent disease in China,cancer is a huge challenge for the country’s healthcare system.Based on recent data published in the Journal of the National Cancer Center on cancer incidence and mortality in China in 2016,we analyzed the current trends in cancer incidence and changes in cancer mortality and survival rate in China.And also,we examined several key risk factors for cancer pathogenesis and discussed potential countermeasures for cancer prevention and treatment in China.展开更多
The National Central Cancer Registry of China (NCCRC) up- dated their nationwide statistics of cancer incidence and mor- tality in China according to 2013 population-based cancer registration data (due to the time ...The National Central Cancer Registry of China (NCCRC) up- dated their nationwide statistics of cancer incidence and mor- tality in China according to 2013 population-based cancer registration data (due to the time required for data collection, quality control and analysis, the latest cancer statistics avail- able in China have a 3-year lag behind the current year).展开更多
Actin filament associated protein 1 antisense RNA 1(named AFAP1-AS1)is a long non-coding RNA and overexpressed in many cancers.This study aimed to identify the role and mechanism of AFAP1-AS1 in lung cancer.The AFAP1-...Actin filament associated protein 1 antisense RNA 1(named AFAP1-AS1)is a long non-coding RNA and overexpressed in many cancers.This study aimed to identify the role and mechanism of AFAP1-AS1 in lung cancer.The AFAP1-AS1 expression was firstly assessed in 187 paraffin-embedded lung cancer and 36 normal lung epithelial tissues by in situ hybridization.The migration and invasion abilities of AFAP1-AS1 were investigated in lung cancer cells.To uncover the molecular mechanism about AFAP1-AS1 function in lung cancer,we screened proteins that interact with AFAP1-AS1 by RNA pull down and the mass spectrometry analyses.AFAP1-AS1 was highly expressed in lung cancer clinical tissues and its expression was positively correlated with lung cancer patients'poor prognosis.In vivo experiments confirmed that AFAP1-AS1 could promote lung cancer metastasis.AFAP1-AS1 promoted lung cancer cells migration and invasion through interacting with Smad nuclear interacting protein 1(named SNIP1),which inhibited ubiquitination and degradation of c-Myc protein.Upregulation of c-Myc molecule in turn promoted the expression of ZEB1,ZEB2,and SNAIL gene,which ultimately enhanced epithelial to mesenchymal transition(EMT)and lung cancer metastasis.Understanding the molecular mechanism by which AFAP1-AS1 promotes lung cancer's migration and invasion may provide novel therapeutic targets for lung cancer patients'early diagnosis and therapy.展开更多
A novel quaternary ammonium salt collector,LH-01,was employed for the reverse cationic flotation of a magnesium-depleted concentrate(P2O5 grade of 19.72wt%,SiO2 content of 44.26wt%).We achieved an outstanding phosphat...A novel quaternary ammonium salt collector,LH-01,was employed for the reverse cationic flotation of a magnesium-depleted concentrate(P2O5 grade of 19.72wt%,SiO2 content of 44.26wt%).We achieved an outstanding phosphate concentrate with a P2O5 grade of 35.16wt%,a SiO2 content of 6.06wt%,and a P2O5 recovery of 75.88%.This process was accomplished through two sequential reverse cationic flotation processes designed for quartz removal.Importantly,the quartz removal by LH-01 reached 94.17%,far superior to that by dodecyltrimethylammonium chloride,achieving highly selective separation of quartz and apatite.To understand the adsorption mechanism and kinetics of the collector LH-01 on quartz and apatite surfaces,various techniques,such as quartz crystal microbalance with dissipation,atomic force microscopy,and X-ray photoelectron spectroscopy,were employed.Results revealed that the adsorption layer of LH-01 on the apatite surface was thin and rigid,with a significantly lower hydrophobic effect than that of the viscoelastic multiple adsorption layer formed by LH-01 on the quartz surface.This disparity was identified as the primary factor contributing to the selective flotation separation of apatite and quartz.Moreover,the adsorption of LH-01 on the quartz surface was the result of multiple forces,including electrostatic adsorption,multiple-hydrogen-bond adsorption,and intermolecular hydrophobic association.展开更多
High-power laser technology is widely used in manufacturing processing,medical diagnosis,and treatment,and is one of the important fields of strategic high-tech competition in China at the moment.In the context of ind...High-power laser technology is widely used in manufacturing processing,medical diagnosis,and treatment,and is one of the important fields of strategic high-tech competition in China at the moment.In the context of industrial upgrading,high-power laser technology plays an important role in leading the development of the manufacturing industry and industrial intelligence.Based on this,this paper carries out research on high-power laser technology and industry,summarizes the basic principle and classification of high-power laser technology,analyzes the current status of high-power laser technology industry,points out the opportunities and challenges faced by the industry development,puts forward suggestions to promote the development of high-power laser technology industry,and to provide an effective reference for the application and development of high-power laser technology.展开更多
Gas insulator switchgears(GISs),widely used in electric power systems for decades,have many advantages due to their compactness,minimal environmental impact,and long maintenance cycles.However,very fast transient over...Gas insulator switchgears(GISs),widely used in electric power systems for decades,have many advantages due to their compactness,minimal environmental impact,and long maintenance cycles.However,very fast transient overvoltage(VFTO)increases caused by a rise in voltage levels can lead to GIS insulation failures.In this paper,a generating system of VFTO and standard lightning impulse(LI)is established.The insulation characteristics of SF6 gas with and without insulators under VFTO and standard LI are investigated.Experimental results show that the 50%breakdown voltages of the inhomogeneous electric field rod-plane gap under positive VFTO and standard LI are higher than that under negative VFTO and standard LI.The research shows that the 50%breakdown voltage under VFTO could be lower than that under standard LI at 0.5 MPa for the negative polarity.Moreover,the polarity effect of the insulator without defect is different from that with defect.Similarly,the breakdown voltage of the defective insulator under VFTO could be lower than that under standard LI by 8%.The flashover channel under VFTO is seen as more than that under standard LI.Based on the analysis of discharge images and experimental results,it is concluded that the polarity effect is related to the distortion effect of ion clusters formed by SF6 on the electric field.Additionally,the steepness and front time of impulse plays an important role in the initiation and further development of discharge on insulator surface.Finally,the research shows that different discharge characteristics between VFTO and standard LI may be caused by different wave fronts and oscillation on the tails of the impulses.展开更多
Long non-coding RNAs(lncRNAs)have become a hotspot in biomedical research.This interest reflects their extensive involvement in the regulation of the expression of other genes,and their influence on the occurrence and...Long non-coding RNAs(lncRNAs)have become a hotspot in biomedical research.This interest reflects their extensive involvement in the regulation of the expression of other genes,and their influence on the occurrence and development of a variety of human diseases.Actin filament associated protein 1-Antisense RNA 1(AFAP1-AS1)is a recently discovered oncogenic lncRNA.It is highly expressed in a variety of solid tumors,and regulates the expression of downstream genes and signaling pathways through adsorption and competing microRNAs,or by the direct binding to other proteins.Ultimately,AFAP1-AS1 promotes proliferation,chemotherapy resistance,and resistance to apoptosis,maintains stemness,and enhances invasion and migration of tumor cells.This paper summarizes the research concerning AFAP1-AS1 in malignant tumors,including the clinical application prospects of AFAP1-AS1 as a potential molecular marker and therapeutic target of malignant tumors.We also discuss the limitations in the knowledge of AFAP1-AS1 and directions of further research.AFAP1-AS1 is expected to provide an example for studies of other lncRNA molecules.展开更多
基金Supported by The Department of Science and Technology of Qinghai Province,No.2018-SF-113"Kunlun Talents-Plateau Famous Doctors"Project in Qinghai Province.
文摘BACKGROUND Gastric cancer(GC)is a relatively frequent clinical phenomenon,referring to ma-lignant tumors emerging in the gastric mucosal epithelial cells.It has a high mor-bidity and mortality rate,posing a significant threat to the health of patients.Hence,how to diagnose and treat GC has become a heated topic in this research field.AIM To discuss the effectiveness and safety of nab-paclitaxel in combination with oxaliplatin and S-1(P-SOX)for the treatment of GC,and to analyze the factors that may influence its outcomes.METHODS A total of 219 eligible patients with advanced GC,who were treated at Qinghai University Affiliated Hospital Gastrointestinal Oncology between January 2018 and March 2020,were included in the study.Among them,149 patients received SOX regimen and 70 patients received S-1 regimen.All patients underwent both preoperative and postoperative chemotherapy consisting of 2-4 cycles each,totaling 6-8 cycles,along with parallel D2 radical surgical treatment.The patients were followed up for a period of three years or until reaching the event endpoint.RESULTS The short-term and long-term efficacy of the P-SOX group was significantly higher than that of the SOX group,and the safety was manageable.Cox multivariate analysis revealed that progression-free survival was associated with perioperative chemotherapy efficacy,tumor diameter≤2cm,high differentiation,and early cTNM(T stands for invasion depth;N stands for node metastasis;M stands for distant invasion)stage.CONCLUSION In comparison to the SOX regimen,the P-SOX regimen demonstrates improved short-term and long-term efficacy with tolerable adverse reactions.It is anticipated that the P-SOX regimen will emerge as a first-line chemotherapy option for GC.Patients with GC who receive effective perioperative chemotherapy(Response Evaluation Criteria in Solid Tumors 1.1,Tumor Regression Grade),have a tumor diameter≤2cm,exhibit high degree of differentiation,and are at an early cTNM stage show better prognosis.
基金supported by the Beijing Municipal Science&Technology Commission(Z191100006619077).
文摘Objectives The combined use of bedaquiline and delamanid(BDQ-DLM)is limited by an increased risk of prolonging the QTc interval.We retrospectively evaluated patients who received DLM/BDQcontaining regimens at a TB-specialized hospital.We aimed to present clinical efficacy and safety data for Chinese patients.Methods This case-control study included patients with multidrug-resistant tuberculosis(MDR-TB)treated with BDQ alone or BDQ plus DLM.Results A total of 96 patients were included in this analysis:64 in the BDQ group and 32 in the BDQ+DLM group.Among the 96 patients with positive sputum culture at the initiation of BDQ alone or BDQ combined with DLM,46 patients(71.9%)in the BDQ group and 29(90.6%)in the BDQ-DLM group achieved sputum culture conversion during treatment.The rate of sputum culture conversion did not differ between the two groups.The time to sputum culture conversion was significantly shorter in the BDQ-DLM group than in the BDQ group.The most frequent adverse event was QTc interval prolongation;however,the frequency of adverse events did not differ between the groups.Conclusion In conclusion,our results demonstrate that the combined use of BDQ and DLM is efficacious and tolerable in Chinese patients infected with MDR-TB.Patients in the BDQ-DLM group achieved sputum culture conversion sooner than those in the BDQ group.
基金supported by the Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an(2022JH-ZDZH-0039)International Science and Technology Cooperation Program of Shaanxi Province (2023-GHZD-50)+9 种基金Project of Qin Chuangyuan ‘Scientist+Engineer’team constructionKey R&D plan of Shaanxi Province (S2023-YF-QCYK-0001-237)Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an (2022JH-ZDZH-0039)National Natural Science Foundation of China (52101134)Natural Science Foundation of Guangdong Province (2022A1515010275)Scientific Research Program Funded by Shaanxi Provincial Education Department (22JK0479)Doctoral Dissertations Innovation Fund of Xi’an University of Technology (101-252072305)Research Start-up Project of Xi’an University of Technology(101-256082204)Natural Science Foundation of Shaanxi Province (2023-JC-QN-0573)Natural Science Basic Research Program of Shaanxi(2023-JC-YB-412)
文摘Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.However,the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment processes.Herein,we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys,and a wire arc additively manufactured(WAAM)Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification.Through this method,the optimal microstructures(fine grain,controllable amount of long period stacking ordered(LPSO)structure and nano-scaleβ'precipitates)and the corresponding customized heat treatment processes(520°C/30 min+200°C/48 h)were obtained to achieve a good combination of a high strength of 364 MPa and a considerable elongation of 6.2%,which surpassed those of other state-of-the-art WAAM-processed Mg alloys.Furthermore,we evidenced that the favorable effect of the undeformed LPSO structures on the mechanical properties was emphasized only when the nano-scaleβ'precipitates were present.It is believed that the findings promote the application of magnesium alloy workpieces and help to establish customized heat treatment processes for additively manufactured materials.
基金the support from the International Science and Technology Cooperation Program of Shaanxi Province(No.2023-GHZD-50)the Projects of Major Innovation Platforms for Scientific and Technological and Local Transformation of Scientific and Technological Achievements of Xi’an(No.20GXSF0003)+1 种基金the Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an(No.2022JH-ZDZH-0039)the Higher Education Institution Discipline Innovation and Intelligence Base of Shaanxi Provincial(No.S2021-ZC-GXYZ-0011)。
文摘It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,the LZQT600-3 DIBs with the diameter of 145 mm were prepared by the horizontal continuous casting(HCC)process,that is,LZQT600-3 HCCDIBs.The microstructure and room temperature tensile properties of different sections[left-edge(surface layer),left-1/2R(left half of the radius),and the center of the HCCDIBs]were studied.The results show that the spheroidization of LZQT600-3 HCCDIBs matrix from the left-edge,left-1/2R to the center is at nodulizing grade II and above.As the cooling rate gradually decreases from surface to the center of the HCCIBs,the number of spheroidized graphite is gradually reduced,the size is gradually increased,the shape factor is decreased,and the pearlite content and lamellate spacing are increased.Along the horizontal direction of the section,the hardness of the material is distributed symmetrically around the center of the HCCDIBs.In the vertical direction,the hardness distribution in the center of the HCCDIBs is asymmetrical due to the gravity during the solidification process.Therefore,the microstructure in the lower part of the section solidifies relatively quickly.The left-edge has the best tensile mechanical properties,and the ultimate tensile strength,yield tensile strength and elongation are 597.3 MPa,418.5 MPa and 9.6%,respectively.The tensile fracture belongs to the ductile-brittle hybrid fracture.The comprehensive performances of LZQT600-3 HCCDIBs meet the actual application requirements of ultra-high pressure hydraulic plunger pump cylinder.
文摘Clinical pathway (CP) is a medical management tool made by a group of medical specialists and specialized for certain diseases. It has been proved that CP was an efficient way to optimize the hospitalization management and control medical cost. In this paper, we focused on the effect of CP in the patients with acute complicated appendicitis via total duration of hospitalization, hospitalization time before operation, total cost of hospitalization and drug expenditure. From March 2014 to March 2015, the patients with conditions of appendicitis in Three Gorges Central Hospital of Wanzhou, Chongqing, were divided into CP group and non path control group to analyze the effect of the application of CP. Our data showed that there were no significant differences between two groups of patients in total duration of hospitalization, hospitalization time before operation, total cost of hospitalization and drug expenditure. The implementation of CP neither decreased the time of patients in hospital nor the total hospitalization cost. Besides, application of CP for acute appendicitis patients should distinguish between simple appendicitis and complicated appendicitis, simple appendectomy patients implement CP is beneficial, and patients with complicated appendicitis did not come from the benefit.
基金supported by Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.22JK0479)Research Start-up Project of Xi’an University of Technology(Grant No.101-256082204)+5 种基金International Science and Technology Cooperation Program of Shaanxi Province(No.2023-GHZD-50)Project of Science and Technology Shaanxi Province(No.2023-JC-YB-412)Project of Science and Technology Shaanxi Province(No.2023-JC-QN-0573)Projects of Major Innovation Platforms for Scientific and Technological and Local Transformation of Scientific and Technological Achievements of Xi’an(No.20GXSF0003)Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an(No.2022JHZDZH-0039)Higher Education Institution Discipline Innovation and Intelligence Base of Shaanxi Provincial(No.S2021-ZC-GXYZ-0011).
文摘Magnesium and its alloys,as a promising class of materials,is popular in lightweight application and biomedical implants due to their low density and good biocompatibility.Additive manufacturing(AM)of Mg and its alloys is of growing interest in academia and industry.The domain-by-domain localized forming characteristics of AM leads to unique microstructures and performances of AM-process Mg and its alloys,which are different from those of traditionally manufactured counterparts.However,the intrinsic mechanisms still remain unclear and need to be in-depth explored.Therefore,this work aims to discuss and analyze the possible underlying mechanisms regarding defect appearance and elimination,microstructure formation and evolution,and performance improvement,based on presenting a comprehensive and systematic review on the relationship between process parameters,forming quality,microstructure characteristics and resultant performances.Lastly,some key perspectives requiring focus for further progression are highlighted to promote development of AM-processed Mg and its alloys and accelerate their industrialization.
基金supported by National Natural Science Foundation of China (51702138, 51702079)Natural Science Foundation of Jiangsu Province (BK20160213)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume change, which results in low reversible capacity and poor cycling stability.Herein, reduced graphene oxide-wrapped FeS_2(FeS_2/rGO)composite was fabricated to achieve excellent electrochemical performance via a facile two-step method. The introduction of rGO effectively improved the conductivity,BET surface area, and structural stability of the FeS_2 active material, thus endowing it with high specific capacity, good rate capability, as well as excellent cycling stability. Electrochemical measurements show that the FeS_2/rGO composite had a high initial discharge capacity of 1263.2 mAh gg^(-1) at 100 mA gg^(-1) and a high discharge capacity of 344 mAh gg^(-1) at 10 A gg^(-1), demonstrating superior rate performance. After 100 cycles at 100 mA gg^(-1),the discharge capacity remained at 609.5 mAh g^(-1), indicating the excellent cycling stability of the FeS_2/rGO electrode.
基金the support from Projects of Major Innovation Platforms for Scientific and Technological and Local Transformation of Scientific and Technological Achievements of Xi’an (No.20GXSF0003)the Higher Education Institution Discipline Innovation and Intelligence Base of Shaanxi Provincial (No.S2021-ZC-GXYZ0011)National Natural Science Foundation of China (Grants No.51801154)。
文摘Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc additive manufacturing(WAAM) process of Mg alloy.The thermal couples were used to monitor the thermal history during the WAAM process. Additionally, the effect of different IDTs on the microstructure characteristics and resultant mechanical properties of WAAM-processed Mg alloy thin-wall were investigated. The results showed that the stable temperature of the thin-wall component could reach 290 ℃ at IDT=0s, indicating that the thermal accumulation effect was remarkable. Consequently, unimodal coarse grains with an average size of 39.6 μm were generated, and the resultant room-temperature tensile property was poor. With the IDT extended to 60s, the thermal input and thermal dissipation reached a balance, and the stable temperature was only 170 ℃, closing to the initial temperature of the substrate. A refined grain structure with bimodal size distribution was obtained. The remelting zone had fine grains with the size of 15.2 μm, while the arc zone owned coarse grains with the size of 24.5 μm.The alternatively distributed coarse and fine grains lead to the elimination of strength-ductility trade-off. The ultimate tensile strength and elongation of the samples at IDT=60s are increased by 20.6 and 75.0% of those samples at IDT=0s, respectively. The findings will facilitate the development of additive manufacturing processes for advanced Mg alloys.
基金support from the International Science and Technology Cooperation Program of Shaanxi Province(No.2023-GHZD-50)Projects of Major Innovation Platforms for Scientific and Technological and Local Transformation of Scientific and Technological Achievements of Xi'an(No.20GXSF0003)+1 种基金Projects of Major Scientific and Technological Achievements Local Transformation of Xi'an(No.2022JH-ZDZH-0039)the Higher Education Institution Discipline Innovation and Intelligence Base of Shaanxi Province(No.S2021-ZCGXYZ-0011).
文摘Based on wire arc additive manufacturing(WAAM)technology,AZ31 magnesium alloy in bulk was successfully fabricated,and its microstructure as well as mechanical properties in different planes were observed and analyzed.The AZ31 magnesium alloy has a similar microstructure in the building direction(Z)and travel direction(X),both of which are equiaxed grains.There are heat-affected zones(HAZs)with coarse grains below the fusion line.The second phase is primarily composed of the Mg17Al12 phase,which is evenly distributed in different directions.In addition,the residual stress varies in different directions.There is no significant difference in the hardness of the AZ31 alloy along the Z and X directions,with the average hardness being 68.4 HV and 67.9 HV,respectively.Even though the specimens’ultimate tensile strength along the travel direction is higher in comparison to that along the building direction,their differences in elongation and yield strength are smaller,indicating that the anisotropy of the mechanical properties of the material is small.
基金This work was supported by the National Natural Science Foundation of China(31960616)the Construction of Modern Agriculture(tea)Industry Technology System(CARS-19)(China)+2 种基金the Key Agricultural Science and Technology Foundation of Guizhou Province([2016]2570)(China)the Science and Technology Foundation of Guizhou Province(2013[2155])(China)the High-value Patent Cultivation Project of Guizhou Province Academy of Agricultural Sciences([2018]02)(China).
文摘Hevea brasiliensis is one of the important economic trees with a great economic value for natural rubber production.Symbiosis between roots of H.brasiliensis and arbuscular mycorrhizal fungi(AMF)is widely recognized,and can provide a range of benefits for both of them.Hainan Island harbors is one of the largest plantations of H.brasiliensis in China,whereas the information regarding the diversity of AMF in the rhizosphere of H.brasiliensis on this island is scarce.The diversity of AMF species in the rhizosphere of rubber tree plantations in Hainan was investigated in this study.A total of 72 soil samples from the rhizosphere of H.brasiliensis RY7-33-97 were collected.These included 48 samples from plantations in 11 cities or counties that had been planted for 15–25 years,and 24 samples from a demonstrating plantation site of the China National Rubber Tree Germplasm Repository representing plantations with tree plantation ages from one to 40 year-old.Collectively,a total of 68 morphotypes of AMF,belonging to the genera of Archaeospora(1),Glomus(43),Acaulospora(18),Entrophospora(3),Scutellospora(2),and Gigaspora(1)were isolated and identified,as per morphological characteristics of spores presented in the collected soil samples.Glomus(Frequency,F=100%)and Acaulospora(F=100%)were the predominant genera,and A.mellea(F=63.9%)and A.scrobiculata(F=63.9%)were the predominant species.AMF species differed significantly among collected sites in spore density(SD,290.7–2,186.7 spores per 100 g dry soil),species richness(SR,4.3–12.3),and Shannon-Weiner index of diversity(H,1.24–2.24).SD was negatively correlated with available phosphorus level in the soil;SR was positively correlated with soil total phosphorus content;and H was positively correlated with levels of soil organic matter and total phosphorus.Similarly,SD,SR,and H were also correlated with H.brasiliensis plantation age,and an increasing trend was observed up to 40 years.These results suggest that the AMF community was complex and ubiquitous in the island plantation ecosystems of H.brasiliensis,with high species abundance and diversity.Soil factors and plantation age dramatically affected AMF diversity at species level.
基金Project supported by the National Natural Science Foundation of China(Grant No.51801154)the Fund from the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China(Grant No.SKLSP201813)the Shaanxi Provincial Science Fund for Distinguished Young Scholars,China(Grant No.2018JC-027).
文摘Grain boundary directed spinodal decomposition has a substantial effect on the microstructure evolution and properties of polycrystalline alloys.The morphological selection mechanism of spinodal decomposition at grain boundaries is a major challenge to reveal,and remains elusive so far.In this work,the effect of grain boundaries on spinodal decomposition is investigated by using the phase-field model.The simulation results indicate that the spinodal morphology at the grain boundary is anisotropic bicontinuous microstructures different from the isotropic continuous microstructures of spinodal decomposition in the bulk phase.Moreover,at grain boundaries with higher energy,the decomposed phases are alternatingα/βlayers that are parallel to the grain boundary.On the contrary,alternatingα/βlayers are perpendicular to the grain boundary.
文摘The debate about the safety of genetically modified foods has never stopped,and different consumers have different judgments. On the basis of literature research,this paper designs the corresponding questionnaire for empirical analysis. With the college students as the object of study,this paper explores the differences in perceived genetically modified food risk by the college students with different majors,as well as the differences in the information processing mode adopted by the college students with different majors,and the differences in the perceived risk after adopting different information processing mode. The results show that there are significant differences in the perceived genetically modified food risk among the college students with different majors,the economics students have the highest average perceived risk; there are also significant differences in the information processing mode adopted by the college students with different majors,and the perceived risk is different when using the heuristic information processing mode.
基金supported by the National Natural Science Foundation of China(82203163)the Natural Science Foundation of Hunan Province(2022JJ40660)+1 种基金the Natural Science Foundation of Changsha(kq2202123)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)。
文摘Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them.Various mechanisms deregulate adhesion molecules in cancer,enabling tumor cells to proliferate without restraint,invade through tissue boundaries,escape from immune surveillance,and survive in the tumor microenvironment.Recent studies have revealed that adhesion molecules also drive angiogenesis,reshape metabolism,and are involved in stem cell self-renewal.In this review,we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment,as well as the therapeutic strategies targeting adhesion molecules.These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.
基金supported by the National Natural Science Foundation of China(U21A20382,U20A20367,82072374)the Overseas Expertise Introduction Project for Discipline Innovation(BP1221008)the Natural Science Foundation of Hunan Province(2021JJ30897,2021JJ41043).
文摘Cancer is one of the leading causes of human death worldwide.Treatment of cancer exhausts significant medical resources,and the morbidity and mortality caused by cancer is a huge social burden.Cancer has therefore become a serious economic and social problem shared globally.As an increasingly prevalent disease in China,cancer is a huge challenge for the country’s healthcare system.Based on recent data published in the Journal of the National Cancer Center on cancer incidence and mortality in China in 2016,we analyzed the current trends in cancer incidence and changes in cancer mortality and survival rate in China.And also,we examined several key risk factors for cancer pathogenesis and discussed potential countermeasures for cancer prevention and treatment in China.
基金supported by the National Natural Science Foundation of China (813 72907, 81472531, 81472595, 81672683, 81672688, 81772928)the Natural Science Foundation ofHunan Province (2015JJ1022, 2016JC2035)the Fundamental Research Funds of the Central South University (2014zzts066)
文摘The National Central Cancer Registry of China (NCCRC) up- dated their nationwide statistics of cancer incidence and mor- tality in China according to 2013 population-based cancer registration data (due to the time required for data collection, quality control and analysis, the latest cancer statistics avail- able in China have a 3-year lag behind the current year).
基金This study was funded by the National Natural Science Foundation of China(82073135,81903015 and 81772928)the Overseas Expertise Introduction Project for Discipline Innovation(111 Project,No.111-2-12)the Natural Science Foundation of Hunan Province(20191)50780 and 2019JJ50872).
文摘Actin filament associated protein 1 antisense RNA 1(named AFAP1-AS1)is a long non-coding RNA and overexpressed in many cancers.This study aimed to identify the role and mechanism of AFAP1-AS1 in lung cancer.The AFAP1-AS1 expression was firstly assessed in 187 paraffin-embedded lung cancer and 36 normal lung epithelial tissues by in situ hybridization.The migration and invasion abilities of AFAP1-AS1 were investigated in lung cancer cells.To uncover the molecular mechanism about AFAP1-AS1 function in lung cancer,we screened proteins that interact with AFAP1-AS1 by RNA pull down and the mass spectrometry analyses.AFAP1-AS1 was highly expressed in lung cancer clinical tissues and its expression was positively correlated with lung cancer patients'poor prognosis.In vivo experiments confirmed that AFAP1-AS1 could promote lung cancer metastasis.AFAP1-AS1 promoted lung cancer cells migration and invasion through interacting with Smad nuclear interacting protein 1(named SNIP1),which inhibited ubiquitination and degradation of c-Myc protein.Upregulation of c-Myc molecule in turn promoted the expression of ZEB1,ZEB2,and SNAIL gene,which ultimately enhanced epithelial to mesenchymal transition(EMT)and lung cancer metastasis.Understanding the molecular mechanism by which AFAP1-AS1 promotes lung cancer's migration and invasion may provide novel therapeutic targets for lung cancer patients'early diagnosis and therapy.
基金supported by Open Foundation of Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources,Ministry of Natural Resources of China(No.CCUM-KY-2310)Science and Technology Program of Guizhou Province,China(Qiankehe support(2020)2Y048).
文摘A novel quaternary ammonium salt collector,LH-01,was employed for the reverse cationic flotation of a magnesium-depleted concentrate(P2O5 grade of 19.72wt%,SiO2 content of 44.26wt%).We achieved an outstanding phosphate concentrate with a P2O5 grade of 35.16wt%,a SiO2 content of 6.06wt%,and a P2O5 recovery of 75.88%.This process was accomplished through two sequential reverse cationic flotation processes designed for quartz removal.Importantly,the quartz removal by LH-01 reached 94.17%,far superior to that by dodecyltrimethylammonium chloride,achieving highly selective separation of quartz and apatite.To understand the adsorption mechanism and kinetics of the collector LH-01 on quartz and apatite surfaces,various techniques,such as quartz crystal microbalance with dissipation,atomic force microscopy,and X-ray photoelectron spectroscopy,were employed.Results revealed that the adsorption layer of LH-01 on the apatite surface was thin and rigid,with a significantly lower hydrophobic effect than that of the viscoelastic multiple adsorption layer formed by LH-01 on the quartz surface.This disparity was identified as the primary factor contributing to the selective flotation separation of apatite and quartz.Moreover,the adsorption of LH-01 on the quartz surface was the result of multiple forces,including electrostatic adsorption,multiple-hydrogen-bond adsorption,and intermolecular hydrophobic association.
文摘High-power laser technology is widely used in manufacturing processing,medical diagnosis,and treatment,and is one of the important fields of strategic high-tech competition in China at the moment.In the context of industrial upgrading,high-power laser technology plays an important role in leading the development of the manufacturing industry and industrial intelligence.Based on this,this paper carries out research on high-power laser technology and industry,summarizes the basic principle and classification of high-power laser technology,analyzes the current status of high-power laser technology industry,points out the opportunities and challenges faced by the industry development,puts forward suggestions to promote the development of high-power laser technology industry,and to provide an effective reference for the application and development of high-power laser technology.
基金supported by National Basic Research Program of China(973 Program)and Science and Technology Project of SGCC“Research on the Application of VFTO Key Techniques in Ultra High GIS Substation”(GYB17201400111).
文摘Gas insulator switchgears(GISs),widely used in electric power systems for decades,have many advantages due to their compactness,minimal environmental impact,and long maintenance cycles.However,very fast transient overvoltage(VFTO)increases caused by a rise in voltage levels can lead to GIS insulation failures.In this paper,a generating system of VFTO and standard lightning impulse(LI)is established.The insulation characteristics of SF6 gas with and without insulators under VFTO and standard LI are investigated.Experimental results show that the 50%breakdown voltages of the inhomogeneous electric field rod-plane gap under positive VFTO and standard LI are higher than that under negative VFTO and standard LI.The research shows that the 50%breakdown voltage under VFTO could be lower than that under standard LI at 0.5 MPa for the negative polarity.Moreover,the polarity effect of the insulator without defect is different from that with defect.Similarly,the breakdown voltage of the defective insulator under VFTO could be lower than that under standard LI by 8%.The flashover channel under VFTO is seen as more than that under standard LI.Based on the analysis of discharge images and experimental results,it is concluded that the polarity effect is related to the distortion effect of ion clusters formed by SF6 on the electric field.Additionally,the steepness and front time of impulse plays an important role in the initiation and further development of discharge on insulator surface.Finally,the research shows that different discharge characteristics between VFTO and standard LI may be caused by different wave fronts and oscillation on the tails of the impulses.
基金supported partially by grants from the National Natural Science Foundation of China(82073135,82072374,82003243,81903138,81803025)the Natural Science Foundation of Hunan Province(2019JJ50872,2020JJ4766).
文摘Long non-coding RNAs(lncRNAs)have become a hotspot in biomedical research.This interest reflects their extensive involvement in the regulation of the expression of other genes,and their influence on the occurrence and development of a variety of human diseases.Actin filament associated protein 1-Antisense RNA 1(AFAP1-AS1)is a recently discovered oncogenic lncRNA.It is highly expressed in a variety of solid tumors,and regulates the expression of downstream genes and signaling pathways through adsorption and competing microRNAs,or by the direct binding to other proteins.Ultimately,AFAP1-AS1 promotes proliferation,chemotherapy resistance,and resistance to apoptosis,maintains stemness,and enhances invasion and migration of tumor cells.This paper summarizes the research concerning AFAP1-AS1 in malignant tumors,including the clinical application prospects of AFAP1-AS1 as a potential molecular marker and therapeutic target of malignant tumors.We also discuss the limitations in the knowledge of AFAP1-AS1 and directions of further research.AFAP1-AS1 is expected to provide an example for studies of other lncRNA molecules.