Ubiquitin-conjugating enzyme UBE2C is one of the important members of ubiquitin-proteasome pathway(UPP).Amplification and/or overexpression of UBE2C have been reported in many malignancies,and a high expression of UBE...Ubiquitin-conjugating enzyme UBE2C is one of the important members of ubiquitin-proteasome pathway(UPP).Amplification and/or overexpression of UBE2C have been reported in many malignancies,and a high expression of UBE2C is associated with poor clinical outcomes.In this review,the pathological role of dysregulated UBE2C in gastrointestinal cancers and its potential role as a diagnostic and/or a prognostic marker as well as a therapeutic target in these cancers are discussed.展开更多
Training deep neural networks(DNNs)requires a significant amount of time and resources to obtain acceptable results,which severely limits its deployment in resource-limited platforms.This paper proposes DarkFPGA,a nov...Training deep neural networks(DNNs)requires a significant amount of time and resources to obtain acceptable results,which severely limits its deployment in resource-limited platforms.This paper proposes DarkFPGA,a novel customizable framework to efficiently accelerate the entire DNN training on a single FPGA platform.First,we explore batch-level parallelism to enable efficient FPGA-based DNN training.Second,we devise a novel hardware architecture optimised by a batch-oriented data pattern and tiling techniques to effectively exploit parallelism.Moreover,an analytical model is developed to determine the optimal design parameters for the DarkFPGA accelerator with respect to a specific network specification and FPGA resource constraints.Our results show that the accelerator is able to perform about 10 times faster than CPU training and about a third of the energy consumption than GPU training using 8-bit integers for training VGG-like networks on the CIFAR dataset for the Maxeler MAX5 platform.展开更多
A novel route involving self‐metathesis of1‐butene under mild conditions that gave high yields ofethene and hexene was proposed.The results of thermodynamic analysis revealed that the Gibbsenergy of the target Metat...A novel route involving self‐metathesis of1‐butene under mild conditions that gave high yields ofethene and hexene was proposed.The results of thermodynamic analysis revealed that the Gibbsenergy of the target Metathesis I reaction(1‐butene?ethene+3‐hexene)was much higher thanthat of the main side Metathesis II(1‐butene+2‐butene?propene+2‐pentene).Suppression of1‐butene double‐bond isomerization was the key step to increase the selectivity for the target olefinin the reaction network.The relationship between the catalytic performance and support nature was investigated in detail.On basis of H2‐TPR,UV‐Vis spectra and HRTEM results,an alumina(Al2O3)support with large surface area was beneficial for the dispersion of molybdenum(Mo)species.Both suitable acidity and sufficient Mo dispersion were important to selectively promote the self‐metathesis reaction of1‐butene.On the optimal6Mo/Al2O3catalyst,1‐butene conversion reached47%and ethene selectivity was as high as42%on the premise of good catalytic stability(80°C,1.0MPa,3h?1).?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
The synthesis of ferrierite(FER)zeolite using piperidine as an organic structure‐directing agent was investigated.X‐ray diffraction,X‐ray fluorescence,N2‐adsorption,and scanning electron microscopy were used to ch...The synthesis of ferrierite(FER)zeolite using piperidine as an organic structure‐directing agent was investigated.X‐ray diffraction,X‐ray fluorescence,N2‐adsorption,and scanning electron microscopy were used to characterize the crystal phases,textural properties,and particle morphologies of the zeolite samples.The crystallization behavior of the FER zeolite was found to be directly related to crystallization temperature.At150?C,pure FER phase was observed throughout crystallization.At160–170?C,MWW phase appeared first and gradually transformed into FER phase over time,indicating that the FER phase was thermodynamically favored.In the piperidine‐Na2O‐H2O synthetic system,alkalinity proved to be the crucial factor determining the size and textural properties of FER zeolite.Furthermore,the obtained FER samples exhibited good catalytic performance in the skeletal isomerization of1‐butene.展开更多
A new kind of bio-inspired, lightweight structure was designed and built from carbon fibre prepreg based on the cross-sectional microstructure of a beetle's elytra. The compression strength and failure process of ...A new kind of bio-inspired, lightweight structure was designed and built from carbon fibre prepreg based on the cross-sectional microstructure of a beetle's elytra. The compression strength and failure process of the resulting structure was analysed using the finite element method; while at the same time, a quasi-static compression experiment was performed using an electronic universal testing machine to verify the effectiveness and accuracy of this finite element method. This bio-inspired structure was compared against a conventional honeycomb structure using FEM, revealing that for a given porosity and load parallel to the axis of the core tubes the respective compressive and specific compressive strengths of the bioinspired structure are much higher at 84.3 MPa and194.7 MPa/(g cm-3); thus demonstrating that this bioinspired structure has superior compressive capability.展开更多
基金This research is supported by the NSFC grant(81773178)belongs to stage result of Hebei Provincial Health and Family Planning Commission Project(Key Science and Technology Research Program)with grant number:20171069.
文摘Ubiquitin-conjugating enzyme UBE2C is one of the important members of ubiquitin-proteasome pathway(UPP).Amplification and/or overexpression of UBE2C have been reported in many malignancies,and a high expression of UBE2C is associated with poor clinical outcomes.In this review,the pathological role of dysregulated UBE2C in gastrointestinal cancers and its potential role as a diagnostic and/or a prognostic marker as well as a therapeutic target in these cancers are discussed.
文摘Training deep neural networks(DNNs)requires a significant amount of time and resources to obtain acceptable results,which severely limits its deployment in resource-limited platforms.This paper proposes DarkFPGA,a novel customizable framework to efficiently accelerate the entire DNN training on a single FPGA platform.First,we explore batch-level parallelism to enable efficient FPGA-based DNN training.Second,we devise a novel hardware architecture optimised by a batch-oriented data pattern and tiling techniques to effectively exploit parallelism.Moreover,an analytical model is developed to determine the optimal design parameters for the DarkFPGA accelerator with respect to a specific network specification and FPGA resource constraints.Our results show that the accelerator is able to perform about 10 times faster than CPU training and about a third of the energy consumption than GPU training using 8-bit integers for training VGG-like networks on the CIFAR dataset for the Maxeler MAX5 platform.
文摘A novel route involving self‐metathesis of1‐butene under mild conditions that gave high yields ofethene and hexene was proposed.The results of thermodynamic analysis revealed that the Gibbsenergy of the target Metathesis I reaction(1‐butene?ethene+3‐hexene)was much higher thanthat of the main side Metathesis II(1‐butene+2‐butene?propene+2‐pentene).Suppression of1‐butene double‐bond isomerization was the key step to increase the selectivity for the target olefinin the reaction network.The relationship between the catalytic performance and support nature was investigated in detail.On basis of H2‐TPR,UV‐Vis spectra and HRTEM results,an alumina(Al2O3)support with large surface area was beneficial for the dispersion of molybdenum(Mo)species.Both suitable acidity and sufficient Mo dispersion were important to selectively promote the self‐metathesis reaction of1‐butene.On the optimal6Mo/Al2O3catalyst,1‐butene conversion reached47%and ethene selectivity was as high as42%on the premise of good catalytic stability(80°C,1.0MPa,3h?1).?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金supported by the National Natural Science Foundation of China(21376235)Natural Science Foundation of Liaoning Province(201602740)~~
文摘The synthesis of ferrierite(FER)zeolite using piperidine as an organic structure‐directing agent was investigated.X‐ray diffraction,X‐ray fluorescence,N2‐adsorption,and scanning electron microscopy were used to characterize the crystal phases,textural properties,and particle morphologies of the zeolite samples.The crystallization behavior of the FER zeolite was found to be directly related to crystallization temperature.At150?C,pure FER phase was observed throughout crystallization.At160–170?C,MWW phase appeared first and gradually transformed into FER phase over time,indicating that the FER phase was thermodynamically favored.In the piperidine‐Na2O‐H2O synthetic system,alkalinity proved to be the crucial factor determining the size and textural properties of FER zeolite.Furthermore,the obtained FER samples exhibited good catalytic performance in the skeletal isomerization of1‐butene.
基金supported by the National Basic Research Program of China (2011CB302106)the National Natural Science Foundation of China (51175249, 51105201)+1 种基金the Aero-Science Foundation of China (2013ZF52072)the Specialized Research Fund for the Doctoral Program of Higher Education (20123218110010)
文摘A new kind of bio-inspired, lightweight structure was designed and built from carbon fibre prepreg based on the cross-sectional microstructure of a beetle's elytra. The compression strength and failure process of the resulting structure was analysed using the finite element method; while at the same time, a quasi-static compression experiment was performed using an electronic universal testing machine to verify the effectiveness and accuracy of this finite element method. This bio-inspired structure was compared against a conventional honeycomb structure using FEM, revealing that for a given porosity and load parallel to the axis of the core tubes the respective compressive and specific compressive strengths of the bioinspired structure are much higher at 84.3 MPa and194.7 MPa/(g cm-3); thus demonstrating that this bioinspired structure has superior compressive capability.