期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
In situ infrared, Raman and X-ray spectroscopy for the mechanistic understanding of hydrogen evolution reaction
1
作者 Andi Haryanto Kyounghoon Jung +1 位作者 chan woo lee Dong-Wan Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期632-651,I0014,共21页
Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely use... Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER. 展开更多
关键词 Hydrogen evolution reaction Infrared spectroscopy Raman spectroscopy X-ray absorption spectroscopy Reaction mechanism
下载PDF
Sub-2 nm mixed metal oxide for electrochemical reduction of carbon dioxide to carbon monoxide
2
作者 Devina Thasia Wijaya Andi Haryanto +2 位作者 Hyun woo Lim Kyoungsuk Jin chan woo lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期303-310,共8页
Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction... Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction.Here,a synthetic method utilizing a MOF-derived micro/mesoporous carbon as a template to prepare sub-2 nm MMO catalysts for CO_(2) electro reduction is reported.Starting from the zeolite imidazolate framework(ZIF-8),the pyrolyzed derivatives were used to synthesize sub-2 nm Pd-Ni MMO with different compositions.The Ni-rich(Pd_(20)-Ni_(80)/ZC) catalyst exhibits unexpectedly superior performance for CO production with an improved Faradaic efficiency(FE) of 95.3% at the current density of 200 mA cm^(-2) at-0.56 V vs.reversible hydrogen electrode(RHE) compared to other Pd-Ni compositions.X-ray photoelectron spectroscopy(XPS) analysis confirms the presence of Ni^(2+) and Pd^(2+) in all compositions,demonstrating the presence of MMO.Density functional theory(DFT) calculation reveals that the lower CO binding energy on the surface of the Pd_(20)-Ni_(80) cluster eases CO desorption,thus increasing its production.This work provides a general synthetic strategy for MMO electrocatalysts and can pave a new way for screening multimetallic catalysts with a dynamic electrochemical interface. 展开更多
关键词 Carbon dioxide reduction Mixed metal oxide NANOALLOY Carbon monoxide Metal-organic framework
下载PDF
Heteroepitaxial growth of ZnO nanosheet bands on ZnCo204 submicron rods toward high-performance Li ion battery electrodes 被引量:8
3
作者 chan woo lee Seung-Deok Seo +4 位作者 Dong wook Kim Sangbaek Park Kyoungsuk Jin Dong-Wan Kim Kug Sun Hong 《Nano Research》 SCIE EI CAS CSCD 2013年第5期348-355,共8页
We report the direct synthesis of ZnC0204 and ZnO/ZnC0204 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimension... We report the direct synthesis of ZnC0204 and ZnO/ZnC0204 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimensional (3D) hierar- chical self-supported nanostructures are composed of one-dimensional (1D) ZnCo204 rods and two-dimensional (2D) ZnO nanosheet bands perpendicular to the axis of the each ZnCo204 rod. We carefully deal with the heteroepitaxial growth mechanisms of hexagonal ZnO nanosheets from a crystallographic point of view. Furthermore, we demonstrate the ability of these high-surface-area ZnO/ZnCo204 heterostructured rods to enable improved electrolyte permeability and Li ion transfer, thereby enhancing their Li storage capability (-900 mA.h.g-1 at a rate of 45 mA.h.g-1) for Li ion battery electrodes. 展开更多
关键词 ZnCo204 submicron rods ZnO nanosheets hierarchicalheterostructure ammonia-evaporation-induced method Li ion battery
原文传递
Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes 被引量:7
4
作者 Sangbaek Park Hyun-woo Shim +5 位作者 chan woo lee Hee Jo Song Ik Jae Park Jae-chan Kim Kug Sun Hong Dong-Wan Kim 《Nano Research》 SCIE EI CAS CSCD 2015年第3期990-1004,共15页
Recent efforts have focused on the fabrication and application of three- dimensional (3-D) nanoarchitecture electrodes, which can exhibit excellent electrochemical performance. Herein, a novel strategy towards the d... Recent efforts have focused on the fabrication and application of three- dimensional (3-D) nanoarchitecture electrodes, which can exhibit excellent electrochemical performance. Herein, a novel strategy towards the design and synthesis of size- and thickness-tunable two-dimensional (2-D) MnO2 nanosheets on highly conductive one-dimensional (l-D) backbone arrays has been developed via a facile, one-step enhanced chemical bath deposition (ECBD) method at a low temperature (-50 ℃). Inclusion of an oxidizing agent, BrO3-, in the solution was crucial in controlling the heterogeneous nucleation and growth of the nanosheets, and in inducing the formation of the tailored and uniformly arranged nanosheet arrays. We fabricated supercapacitor devices based on 3-D MnO2 nanosheets with conductive Sb-doped SnO2 nanobelts as the backbone. They achieved a specific capacitance of 162 F·g-1 at an extremely high current density of 20 A·g% and good cycling stability that shows a capacitance retention of -92% of its initial value, along with a coulombic efficiency of almost 100% after 5,000 cycles in an aqueous solution of I M Na2SO4. The results were attributed to the unique hierarchical structures, which provided a short diffusion path of electrolyte ions by means of the 2-D sheets and direct electrical connections to the current collector by 1-D arrays as well as the prevention of aggregation by virtue of the well-aligned 3-D structure. 展开更多
关键词 NANOSHEETS manganese oxide chemical bath deposition SnO2 nanobelts SUPERCAPACITOR
原文传递
Surface-area-tuned, quantum-dot-sensitized heterostructured nanoarchitectures for highly efficient photoelectrodes 被引量:2
5
作者 Sangbaek Park Donghoe Kim +5 位作者 chan woo lee Seong-Deok Seo Hae Jin Kim Hyun Soo Han Kug Sun Hong Dong-Wan Kim 《Nano Research》 SCIE EI CAS CSCD 2014年第1期144-153,共10页
Harvesting solar energy to produce clean hydrogen from photoelectrolysis of water presents a valuable opportunity to find alternatives for fossil fuels. Three- dimensional nanoarchitecturing techniques can afford enha... Harvesting solar energy to produce clean hydrogen from photoelectrolysis of water presents a valuable opportunity to find alternatives for fossil fuels. Three- dimensional nanoarchitecturing techniques can afford enhanced photoelectrochemical properties by improving geometrical and structural effects. Here, we report quantum-dot sensitized TiO2-Sb:SnO2 heterostructures as a model electrode to enable the optimization of the structural effects through the creation of a highly conductive pathway using a transparent conducting oxide (TCO), coupled with a high surface area, by introducing branching and low interfacial resistance via an epitaxial relationship. An examination of various morphologies (dot, rod, and lamella shape) of TiO2 reveals that the rod-shaped TiO2-Sb:SnO2 is a more effective structure than the others. A photoelectrode fabricated using optimized CdS--TiO2-Sb:SnO2 produces a photocurrent density of 7.75 mA/cm2 at 0.4 V versus a reversible hydrogen electrode. These results demonstrate that constructing a branched heterostructure based on TCO can realize highperformance photoelectrochemical devices. 展开更多
关键词 PHOTOELECTROCHEMICAL hydrogen evolution antimony-doped tinoxide TiO2 quantum dot
原文传递
High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18049 nanostructure electrodes 被引量:1
6
作者 Sangbaek Park Hyun-woo Shim +3 位作者 chan woo lee Hee Jo Song Jae-chan Kim Dong-Wan Kim 《Nano Research》 SCIE EI CAS CSCD 2016年第3期633-643,共11页
We report the facile, one-pot synthesis of 3-D urchin-like W18O49 nanostructures (U-WO) via a simple solvothermal approach. An excellent supercapacitive performance was achieved by the U-WO because of its large Brun... We report the facile, one-pot synthesis of 3-D urchin-like W18O49 nanostructures (U-WO) via a simple solvothermal approach. An excellent supercapacitive performance was achieved by the U-WO because of its large Brunauer-Emmett- Teller (BET) specific surface area (ca. 123 m2.g-1) and unique morphological and structural features. The U-WO electrodes not only exhibit a high rate-capability with a specific capacitance (Csp) of -235 F·g-1 at a current density of 20 A.g-1, but also superior long-life performance for 1,000 cycles, and even up to 7,000 cycles, showing -176 F·g-1 at a high current density of 40 A.g-1. 展开更多
关键词 hierarchical structure W18O49 HIGH-POWER long cycle life SUPERCAPACITOR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部