期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Chlorine-Substituent Regulation in Dopant-Free Small-Molecule Hole-Transport Materials Improves the Effi ciency and Stability of Inverted Perovskite Solar Cells
1
作者 Xinyi Liu Xiaoye Zhang +7 位作者 Zhanfeng Li Jinbo Chen Yanting Tian Baoyou Liu changfeng si Gang Yue Hua Dong Zhaoxin Wu 《Transactions of Tianjin University》 EI CAS 2024年第4期314-323,共10页
Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,spec... Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs. 展开更多
关键词 Hole-transport materials Inverted perovskite solar cells Chlorinated small molecules Donor–acceptor–donor structure
下载PDF
Rational molecular design of efficient yellow-red dendrimer TADF for solution-processed OLEDs: a combined effect of substitution position and strength of the donors
2
作者 changfeng si Dianming Sun +3 位作者 Tomas Matulaitis David B.Cordes Alexandra M.Z.Slawin Eli Zysman-Colman 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第5期1613-1623,共11页
The development of high-performance solution-processed red organic light-emitting diodes(OLEDs) remains a challenge,particularly in terms of maintaining efficiency at high luminance. Here, we designed and synthesized ... The development of high-performance solution-processed red organic light-emitting diodes(OLEDs) remains a challenge,particularly in terms of maintaining efficiency at high luminance. Here, we designed and synthesized four novel orange-red thermally activated delayed fluorescence(TADF) dendrimers that are solution-processable: 2GCz BP, 2DPACz BP, 2FBP2GCz and 2FBP2DPACz. We systematically investigated the effect of substitution position and strength of donors on the optoelectronic properties. The reverse intersystem crossing rate constant(kRISC) of the emitters having donors substituted at positions 11and 12 of the dibenzo[a,c]phenazine(BP) is more than 10-times faster than that of compounds substituted having donors substituted at positions 3 and 6. Compound 2DPACz BP, containing stronger donors than 2GCz BP, exhibits a red-shifted emission and smaller singlet-triplet energy splitting, ΔE_(ST), of 0.01 e V. The solution-processed OLED with 10 wt% 2DPACz BP doped in m CP emitted at 640 nm and showed a maximum external quantum efficiency(EQE_(max)) of 7.8%, which was effectively maintained out to a luminance of 1,000 cd m-2. Such a device's performance at relevant display luminance is among the highest for solution-processed red TADF OLEDs. The efficiency of the devices was improved significantly by using 4Cz IPN as an assistant dopant in a hyperfluorescence(HF) configuration, where the 2DPACz BP HF device shows an EQEmaxof 20.0% at λEL of 605 nm and remains high at 11.8% at a luminance of 1,000 cd m-2, which makes this device one of the highest efficiency orange-to-red HF SP-OLEDs to date. 展开更多
关键词 thermally activated delayed fluorescence solution-processing red OLEDs dibenzo[a c]phenazine DENDRIMERS
原文传递
Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer 被引量:1
3
作者 Guo CHEN changfeng si +4 位作者 Pengpeng ZHANG Kunping GUO Saihu PAN Wenqing ZHU Bin WEI 《Frontiers of Materials Science》 SCIE CSCD 2017年第3期233-240,共8页
We have improved the photovoltaic performance of 2,4-bis[4-(N,N- diisobutylamino)-2,6-dihydroxyphenyl] squaraine:[6,6]-phenyl C71-butyric acid methyl ester (DIBSQ:PC71BM) organic photovoltaic (OPV) cells via i... We have improved the photovoltaic performance of 2,4-bis[4-(N,N- diisobutylamino)-2,6-dihydroxyphenyl] squaraine:[6,6]-phenyl C71-butyric acid methyl ester (DIBSQ:PC71BM) organic photovoltaic (OPV) cells via incorporating Liq-doped Bphen (Bphen-Liq) as a cathode buffer layer (CBL). Based on the Bphen-Liq CBL, a DIBSQ:PC71BM OPV cell possessed an optimal power conversion efficiency of 4.90%, which was 13% and 60% higher than those of the devices with neat Bphen as CBL and without CBL, respectively. The enhancement of the device performance could be attributed to the enhanced electron mobility and improved electrode/active layer contact and thus the improved photocurrent extraction by incorporating the Bphen-Liq CBL. Light-intensity dependent device performance analysis indicates that the incorporating of the Bphen-Liq CBL can remarkably improve the charge transport of the DIBSQ:PC71BM OPV cell and thus decrease the recombination losses of the device, resulting in enhanced device performance. Our finding indicates that the doped Bphen-Liq CBL has great potential for high-performance solution-processed small-molecule OPVs. 展开更多
关键词 organic photovoltaic cells SQUARAINE cathode buffer layer power conversion efficiency solution-process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部