Extraction of methane hydrate from subseafloor reservoir may potentially trigger seabed slides and induce subsidence.To address the problems,it is crucial to properly characterize the phase equilibrium condition of po...Extraction of methane hydrate from subseafloor reservoir may potentially trigger seabed slides and induce subsidence.To address the problems,it is crucial to properly characterize the phase equilibrium condition of pore hydrate and the shear strength of the soil.As one of the key constitutive components,the phase equilibrium condition enforces a constraint over pore gas pressure,temperature and unhydrated water content.Such a constraint,however,has been traditionally ignored in analyzing the mechanical behavior of hydrate-bearing soil.In this paper,a series of stepwise hydrate dissociation tests was performed,and the phase equilibrium condition of pore hydrate was determined,providing an effective way to evaluate the unhydrated water content during hydrate dissociation.Meanwhile,a series of direct shear tests was also conducted to explore the shear strength characteristics of the soil.It is shown that the shear strength of the hydrate-bearing soil can be significantly influenced by pore gas pressure,unhydrated water content,hydrate saturation and several other factors.In particular,the measured shear strength depends upon the initial water content of the sample,pointing to a potential problem that the shear strength could be wrongly determined if not properly interpreted.A shear strength criterion,which enforces the equilibrium condition of pore hydrate,is developed for hydrate-bearing soil,establishing a link between the equilibrium condition and the shear strength.The proposed equation describes well the shear strength characteristics of hydrate-bearing soils,remarkably unifying the effects of pore pressure,temperature,water content and hydrate saturation.展开更多
The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing ...The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing sediment deviates from that of pure bulk hydrate,reflecting the porous media effect in phase equilibrium.A generalized phase equilibrium equation was established for hydrate-bearing sediments,which indicates that both capillary and osmotic pressures cause the phase equilibrium curve to shift leftward on the temperature-pressure plane.In contrast to bulk hydrate,hydrate-bearing sediment always contains a certain amount of unhydrated water,which keeps phase equilibrium with the hydrate within the hydrate stability field.With changes in temperature and pressure,a portion of pore hydrate and unhydrated water may transform into each other,affecting the shear strength of hydrate-bearing sediment.A shear strength model is proposed to consider not only hydrate saturation but also the change in temperature and pressure of hydrate-bearing sediment.The model is validated by experimental data with various hydrate saturation,temperature and pressure conditions.The deformation induced by partial dissociation was studied through depressurization tests under constant effective stress.The reduction in gas pressure within the hydrate stability field indeed caused sediment deformation.The dissociation-induced deformation can be reasonably estimated as the difference in volume between hydrate-bearing and hydrate-free sediments from the compression curves.展开更多
Shear strength is an essential geotechnical parameter for assessing the landslide potential of loess slopes under rainfall infiltration and farm irrigation conditions on the loess plateau.However,the hydraulic path de...Shear strength is an essential geotechnical parameter for assessing the landslide potential of loess slopes under rainfall infiltration and farm irrigation conditions on the loess plateau.However,the hydraulic path dependence of shear strength for compacted loess under varying rainfall infiltration conditions has not been thoroughly investigated yet.To this end,a series of direct shear tests and nuclear magnetic resonance(NMR)measurements are carried out on compacted loess.The shear strength tests were continuously implemented on loess specimens under scanning wetting paths besides initial drying paths.The experimental data quantitatively verify the significant effect of hydraulic paths applied to specimens on shear strength of compacted loess.The unique failure envelope of shear strength of loess is identified under the effective stress framework based on intergranular stress,which verifies that the effective stress framework can consider the effect of hydraulic paths on shear strength.Based on the effective stress,a shear strength formula is proposed to characterize shear strengths under varying hydraulic paths,in which the parameters from the soil-water retention curve and shear strength at saturated state are simply required.The proposed shear strength formula can properly predict the measured shear strength data of compacted loess experiencing three hydraulic paths.Furthermore,the distribution curves of transverse relaxation time for pore water in soil under varying hydraulic paths are simultaneously measured using the NMR method.The physical mechanism for the difference in shear strength of loess subjected to different hydraulic paths can be uncovered based on soil-water evolutions in pores in microscale.展开更多
基金This research was funded by the National Science Foundation of China(NSFC)(Grant Nos.51939011 and 42171135)Youth Innovation Promotion Association,Chinese Academy of Sciences(CAS)(Grant No.2020326),which are gratefully acknowledged.
文摘Extraction of methane hydrate from subseafloor reservoir may potentially trigger seabed slides and induce subsidence.To address the problems,it is crucial to properly characterize the phase equilibrium condition of pore hydrate and the shear strength of the soil.As one of the key constitutive components,the phase equilibrium condition enforces a constraint over pore gas pressure,temperature and unhydrated water content.Such a constraint,however,has been traditionally ignored in analyzing the mechanical behavior of hydrate-bearing soil.In this paper,a series of stepwise hydrate dissociation tests was performed,and the phase equilibrium condition of pore hydrate was determined,providing an effective way to evaluate the unhydrated water content during hydrate dissociation.Meanwhile,a series of direct shear tests was also conducted to explore the shear strength characteristics of the soil.It is shown that the shear strength of the hydrate-bearing soil can be significantly influenced by pore gas pressure,unhydrated water content,hydrate saturation and several other factors.In particular,the measured shear strength depends upon the initial water content of the sample,pointing to a potential problem that the shear strength could be wrongly determined if not properly interpreted.A shear strength criterion,which enforces the equilibrium condition of pore hydrate,is developed for hydrate-bearing soil,establishing a link between the equilibrium condition and the shear strength.The proposed equation describes well the shear strength characteristics of hydrate-bearing soils,remarkably unifying the effects of pore pressure,temperature,water content and hydrate saturation.
基金supported by the National Natural Science Foundation of China(Grant Nos.42171135 and 12262009)the“CUG Scholar”Scientific Research Funds at China University of Geosciences(Wuhan)(Project No.2022098).
文摘The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing sediment deviates from that of pure bulk hydrate,reflecting the porous media effect in phase equilibrium.A generalized phase equilibrium equation was established for hydrate-bearing sediments,which indicates that both capillary and osmotic pressures cause the phase equilibrium curve to shift leftward on the temperature-pressure plane.In contrast to bulk hydrate,hydrate-bearing sediment always contains a certain amount of unhydrated water,which keeps phase equilibrium with the hydrate within the hydrate stability field.With changes in temperature and pressure,a portion of pore hydrate and unhydrated water may transform into each other,affecting the shear strength of hydrate-bearing sediment.A shear strength model is proposed to consider not only hydrate saturation but also the change in temperature and pressure of hydrate-bearing sediment.The model is validated by experimental data with various hydrate saturation,temperature and pressure conditions.The deformation induced by partial dissociation was studied through depressurization tests under constant effective stress.The reduction in gas pressure within the hydrate stability field indeed caused sediment deformation.The dissociation-induced deformation can be reasonably estimated as the difference in volume between hydrate-bearing and hydrate-free sediments from the compression curves.
基金supported by the National Natural Science Foundation of China(Grant Nos.41877269,12002243,41907046).
文摘Shear strength is an essential geotechnical parameter for assessing the landslide potential of loess slopes under rainfall infiltration and farm irrigation conditions on the loess plateau.However,the hydraulic path dependence of shear strength for compacted loess under varying rainfall infiltration conditions has not been thoroughly investigated yet.To this end,a series of direct shear tests and nuclear magnetic resonance(NMR)measurements are carried out on compacted loess.The shear strength tests were continuously implemented on loess specimens under scanning wetting paths besides initial drying paths.The experimental data quantitatively verify the significant effect of hydraulic paths applied to specimens on shear strength of compacted loess.The unique failure envelope of shear strength of loess is identified under the effective stress framework based on intergranular stress,which verifies that the effective stress framework can consider the effect of hydraulic paths on shear strength.Based on the effective stress,a shear strength formula is proposed to characterize shear strengths under varying hydraulic paths,in which the parameters from the soil-water retention curve and shear strength at saturated state are simply required.The proposed shear strength formula can properly predict the measured shear strength data of compacted loess experiencing three hydraulic paths.Furthermore,the distribution curves of transverse relaxation time for pore water in soil under varying hydraulic paths are simultaneously measured using the NMR method.The physical mechanism for the difference in shear strength of loess subjected to different hydraulic paths can be uncovered based on soil-water evolutions in pores in microscale.