Both concentrations and emissions of many air pollutants have been decreasing due to implement of control measures in China,in contrast to the fact that an increase in emissions of non-methane hydrocarbons(NMHCs)has b...Both concentrations and emissions of many air pollutants have been decreasing due to implement of control measures in China,in contrast to the fact that an increase in emissions of non-methane hydrocarbons(NMHCs)has been reported.This study employed seven years continuous NMHCsmeasurements and the related activities data of Shanghai,a megacity in China,to explore evolution of emissions and effectiveness of air pollution control measures.The mixing ratio of NMHCs showed no statistical interannual changes,of which their compositions exhibited marked changes.This resulted in a decreasing trend of ozone formation potential by 3.8%/year(p<0.05,the same below),which should be beneficial to ozone pollution mitigation as its production in Shanghai is in the NMHCs-limited regime.Observed alkanes,aromatics and acetylene changed by+3.7%/year,-5.9%/year and-7.4%/year,respectively,and alkenes showed no apparent trend.NMHCs sources were apportioned by a positive matrix factorization model.Accordingly,vehicular emissions(-5.9%/year)and petrochemical industry emissions(-7.1%/year)decreased significantly,but the decrease slowed down;significant reduction in solvent usage(-9.0%/year)appeared after 2010;however,emissions of natural gas(+12.6%/year)and fuel evaporation(with an increasing fraction)became more important.The inconsistency between observations and inventories was found in interannual trend and speciation as well as source contributions,emphasizing the need for further validation in NMHCs emission inventory.Our study confirms the effectiveness of measures targeting mobile and centralized emissions from industrial sources and reveals a need focusing on fugitive emissions,which provided new insights into future air policies in polluted region.展开更多
Ozone has become one of the most important air pollution issues around the world. This article applied both O 3 /(NOy-NOx) and H 2 O 2 /HNO 3 indicators to analyze the ozone sensitivity in urban and rural areas of S...Ozone has become one of the most important air pollution issues around the world. This article applied both O 3 /(NOy-NOx) and H 2 O 2 /HNO 3 indicators to analyze the ozone sensitivity in urban and rural areas of Shanghai, with implementation of the MM5-CMAQ modeling system in July, 2007. The meteorological parameters were obtained by using the MM5 model. A regional emission inventory with spatial and temporal allocation based on the statistical data has been developed to provide input emission data to the MM5-CMAQ modeling system. Results showed that the ozone concentrations in Shanghai show clear regional differences. The ozone concentration in rural areas was much higher than that in the urban area. Two indicators showed that ozone was more sensitive to VOCs in urban areas, while it tended to be NOx sensitive in rural areas of Shanghai.展开更多
This study investigated the emission characteristics of ultra.fine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engin...This study investigated the emission characteristics of ultra.fine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35)×10^8 cm^-3. The on-board measurement results illustrated that the ultra_fine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 ×10^6 cm^-3 and 2.7 ×10^7 cm^-3 under decelerating and idling operations and as high as 5.0×10^8 cm^-3 under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.展开更多
In this work, a one-year observation focusing on high time resolution characteristics of components in fine particles was conducted at an urban site in Shanghai. Contributions of different components on visibility imp...In this work, a one-year observation focusing on high time resolution characteristics of components in fine particles was conducted at an urban site in Shanghai. Contributions of different components on visibility impairment were also studied. Our research indicates that the major components of PM2.5 in Shanghai are water-soluble inorganic ions and carbonaceous aerosol, accounting for about 60% and 30% respectively. Higher concentrations of sulfate (SO42-) and organic carbon (OC) in PM2.s occurred in fall and summer, while higher concentrations of nitrate (NO3-) were observed in winter and spring. The mass concentrations of Cl- and K+ were higher in winter. Moreover, NO3- increased significantly during PM2.s pollution episodes. The high values observed for the sulfate oxidizing rate (SOR), nitrate oxidizing rate (NOR) and secondary organic carbon (SOC) in OC indicate that photochemical reactions were quite active in Shanghai. The IMPROVE (Interagency Monitoring of Protected Visual Environments) formula was used in this study to investigate the contributions of individual PM2.5 chemical components to the light extinction efficient in Shanghai. Both NH4NO3 and (NH4)aSO4 had close relationships with visibility impairment in Shanghai. Our results show that the reduction of anthropogenic SO2, NOx and NH3 would have a significant effect on the improvement of air qualitv and visibility in Shanghai.展开更多
A field campaign on air quality was carried out in Shanghai in winter of 2012. The concentrations of NO, NO2, NOx, SO2, CO, and PM2.5increased during haze formation. The average masses of SO4^2-, NO3^-and NH4^+were 1...A field campaign on air quality was carried out in Shanghai in winter of 2012. The concentrations of NO, NO2, NOx, SO2, CO, and PM2.5increased during haze formation. The average masses of SO4^2-, NO3^-and NH4^+were 10.3, 11.7 and 6.7 μg/m^3 during the haze episodes, which exceeded the average(9.2, 7.9, and 3.4 μg/m3) of these components in the non-haze days. The mean values for the aerosol scattering coefficient(b sp), aerosol absorption coefficient(b ap) and single scattering albedo(SSA) were 288.7, 27.7 and0.91 Mm-1, respectively. A bi-peak distribution was observed for the mass concentrations of CO, NO, NO2, and NOx. More sulfate was produced during daytime than that in the evening due to photochemical reactions. The mass concentration of NH4+achieved a small peak at noontime. NO3-showed lower concentrations in the afternoon and higher concentrations in the early morning. There were obvious bi-peak diurnal patterns for b sp and b ap as well as SSA. b sp and b ap showed a positive correlation with PM2.5mass concentration.(NH4)2SO4, NH4NO3, organic mass, elemental carbon and coarse mass accounted for 21.7%, 19.3%, 31.0%, 9.3% and 12.3% of the total extinction coefficient during non-haze days, and 25.6%, 24.3%, 30.1%, 8.1% and 8.2% during hazy days. Organic matter was the largest contributor to light extinction. The contribution proportions of ammonium sulfate and ammonium nitrate to light extinction were significantly higher during the hazy time than during the non-haze days.展开更多
The characteristic ratios of volatile organic compounds(VOCs) to i-pentane, the indicator of vehicular emissions, were employed to apportion the vehicular and non-vehicular contributions to reactive species in urban...The characteristic ratios of volatile organic compounds(VOCs) to i-pentane, the indicator of vehicular emissions, were employed to apportion the vehicular and non-vehicular contributions to reactive species in urban Shanghai. Two kinds of tunnel experiments, one tunnel with more than 90% light duty gasoline vehicles and the other with more than 60% light duty diesel vehicles, were carried out to study the characteristic ratios of vehicle-related emissions from December 2009 to January 2010. Based on the experiments, the characteristic ratios of C6–C8aromatics to i-pentane of vehicular emissions were 0.53 ± 0.08(benzene), 0.70 ± 0.12(toluene),0.41 ± 0.09(m,p-xylenes), 0.16 ± 0.04(o-xylene), 0.023 ± 0.011(styrene), and 0.15 ± 0.02(ethylbenzene), respectively. The source apportionment results showed that around 23.3% of C6–C8 aromatics in urban Shanghai were from vehicular emissions, which meant that the non-vehicular emissions had more importance. These findings suggested that emission control of non-vehicular sources, i.e. industrial emissions, should also receive attention in addition to the control of vehicle-related emissions in Shanghai. The chemical removal of VOCs during the transport from emissions to the receptor site had a large impact on the apportionment results. Generally, the overestimation of vehicular contributions would occur when the VOC reaction rate constant with OH radicals(k OH) was larger than that of the vehicular indicator, while for species with smaller k OH than the vehicular indicator, the vehicular contribution would be underestimated by the method of characteristic ratios.展开更多
Here we present a graphene photodetector ofwhich the graphene and structural system infraredabsorptions are enhanced by interface phonon polariton(IPhP) coupling. IPhPs are supported at the SiC/AlNinterface of device ...Here we present a graphene photodetector ofwhich the graphene and structural system infraredabsorptions are enhanced by interface phonon polariton(IPhP) coupling. IPhPs are supported at the SiC/AlNinterface of device structure and used to excite interbandtransitions of the intrinsic graphene under gated-fieldtuning. The simulation results show that at normalincidence the absorbance of graphene or system reachesup to 43% or closes to unity in a mid-infrared frequencyrange. In addition, we found the peak-absorption frequencyis mainly decided by the AlN thickness, and it has ared-shift as the thickness decreases. This structure has greatapplication potential in graphene infrared detectiontechnology.展开更多
基金supported by the National Key Research and Development Program of China (No. 2018YFC0209800, 2017YFC1501405)the Shanghai Science and Technology Commission of the Shanghai Municipality (No. 20ZR1447800)the National Natural Science Foundation of China (No. 41775129)
文摘Both concentrations and emissions of many air pollutants have been decreasing due to implement of control measures in China,in contrast to the fact that an increase in emissions of non-methane hydrocarbons(NMHCs)has been reported.This study employed seven years continuous NMHCsmeasurements and the related activities data of Shanghai,a megacity in China,to explore evolution of emissions and effectiveness of air pollution control measures.The mixing ratio of NMHCs showed no statistical interannual changes,of which their compositions exhibited marked changes.This resulted in a decreasing trend of ozone formation potential by 3.8%/year(p<0.05,the same below),which should be beneficial to ozone pollution mitigation as its production in Shanghai is in the NMHCs-limited regime.Observed alkanes,aromatics and acetylene changed by+3.7%/year,-5.9%/year and-7.4%/year,respectively,and alkenes showed no apparent trend.NMHCs sources were apportioned by a positive matrix factorization model.Accordingly,vehicular emissions(-5.9%/year)and petrochemical industry emissions(-7.1%/year)decreased significantly,but the decrease slowed down;significant reduction in solvent usage(-9.0%/year)appeared after 2010;however,emissions of natural gas(+12.6%/year)and fuel evaporation(with an increasing fraction)became more important.The inconsistency between observations and inventories was found in interannual trend and speciation as well as source contributions,emphasizing the need for further validation in NMHCs emission inventory.Our study confirms the effectiveness of measures targeting mobile and centralized emissions from industrial sources and reveals a need focusing on fugitive emissions,which provided new insights into future air policies in polluted region.
基金supported by the Chinese National Key Technology R&D Program (No. 2009BAK43B33)
文摘Ozone has become one of the most important air pollution issues around the world. This article applied both O 3 /(NOy-NOx) and H 2 O 2 /HNO 3 indicators to analyze the ozone sensitivity in urban and rural areas of Shanghai, with implementation of the MM5-CMAQ modeling system in July, 2007. The meteorological parameters were obtained by using the MM5 model. A regional emission inventory with spatial and temporal allocation based on the statistical data has been developed to provide input emission data to the MM5-CMAQ modeling system. Results showed that the ozone concentrations in Shanghai show clear regional differences. The ozone concentration in rural areas was much higher than that in the urban area. Two indicators showed that ozone was more sensitive to VOCs in urban areas, while it tended to be NOx sensitive in rural areas of Shanghai.
基金supported the Instantaneous Emission and Environmental Impact study on Vehicle Alternative Fuel(No.10231201902)the Project of Study and Demonstration of Real Time On-Road Vehicle Emission and Pollution Warning (No.10231201700) from the Shanghai Science and Technology Commission
文摘This study investigated the emission characteristics of ultra.fine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35)×10^8 cm^-3. The on-board measurement results illustrated that the ultra_fine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 ×10^6 cm^-3 and 2.7 ×10^7 cm^-3 under decelerating and idling operations and as high as 5.0×10^8 cm^-3 under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.
基金supported by the “Chinese National Key Technology R&D Program” (No. 2014BAC22B03)the “Chinese National Non-profit Scientific Research Program” (No. 201409008)the Key Research Project from the Science and Technology Commission of Shanghai Municipality Fund Project (No. 14DZ1202905)
文摘In this work, a one-year observation focusing on high time resolution characteristics of components in fine particles was conducted at an urban site in Shanghai. Contributions of different components on visibility impairment were also studied. Our research indicates that the major components of PM2.5 in Shanghai are water-soluble inorganic ions and carbonaceous aerosol, accounting for about 60% and 30% respectively. Higher concentrations of sulfate (SO42-) and organic carbon (OC) in PM2.s occurred in fall and summer, while higher concentrations of nitrate (NO3-) were observed in winter and spring. The mass concentrations of Cl- and K+ were higher in winter. Moreover, NO3- increased significantly during PM2.s pollution episodes. The high values observed for the sulfate oxidizing rate (SOR), nitrate oxidizing rate (NOR) and secondary organic carbon (SOC) in OC indicate that photochemical reactions were quite active in Shanghai. The IMPROVE (Interagency Monitoring of Protected Visual Environments) formula was used in this study to investigate the contributions of individual PM2.5 chemical components to the light extinction efficient in Shanghai. Both NH4NO3 and (NH4)aSO4 had close relationships with visibility impairment in Shanghai. Our results show that the reduction of anthropogenic SO2, NOx and NH3 would have a significant effect on the improvement of air qualitv and visibility in Shanghai.
基金supported by the Ministry of Science and Technology of China (No. 2013CB955804)the National Natural Science Foundation of China (Nos. 41175018, 41475113)the Ministry of Environmental Protection of China (Nos. 201209001, 201409008, 201209007)
文摘A field campaign on air quality was carried out in Shanghai in winter of 2012. The concentrations of NO, NO2, NOx, SO2, CO, and PM2.5increased during haze formation. The average masses of SO4^2-, NO3^-and NH4^+were 10.3, 11.7 and 6.7 μg/m^3 during the haze episodes, which exceeded the average(9.2, 7.9, and 3.4 μg/m3) of these components in the non-haze days. The mean values for the aerosol scattering coefficient(b sp), aerosol absorption coefficient(b ap) and single scattering albedo(SSA) were 288.7, 27.7 and0.91 Mm-1, respectively. A bi-peak distribution was observed for the mass concentrations of CO, NO, NO2, and NOx. More sulfate was produced during daytime than that in the evening due to photochemical reactions. The mass concentration of NH4+achieved a small peak at noontime. NO3-showed lower concentrations in the afternoon and higher concentrations in the early morning. There were obvious bi-peak diurnal patterns for b sp and b ap as well as SSA. b sp and b ap showed a positive correlation with PM2.5mass concentration.(NH4)2SO4, NH4NO3, organic mass, elemental carbon and coarse mass accounted for 21.7%, 19.3%, 31.0%, 9.3% and 12.3% of the total extinction coefficient during non-haze days, and 25.6%, 24.3%, 30.1%, 8.1% and 8.2% during hazy days. Organic matter was the largest contributor to light extinction. The contribution proportions of ammonium sulfate and ammonium nitrate to light extinction were significantly higher during the hazy time than during the non-haze days.
基金supported by the special fund of the Ministry of Environmental Protection of China (No. 201409008)the Shanghai Environmental Protection Bureau (No. 2013-03)+2 种基金the National Natural Science Foundation of China (No. 21190053)the Shanghai Science and Technology Commission of Shanghai Municipality (Nos. 12DJ1400100, 13XD1400700, 14YF1413200)the Priority fields for Ph.D. Programs Foundation of Ministry of Education of China(No. 20110071130003)
文摘The characteristic ratios of volatile organic compounds(VOCs) to i-pentane, the indicator of vehicular emissions, were employed to apportion the vehicular and non-vehicular contributions to reactive species in urban Shanghai. Two kinds of tunnel experiments, one tunnel with more than 90% light duty gasoline vehicles and the other with more than 60% light duty diesel vehicles, were carried out to study the characteristic ratios of vehicle-related emissions from December 2009 to January 2010. Based on the experiments, the characteristic ratios of C6–C8aromatics to i-pentane of vehicular emissions were 0.53 ± 0.08(benzene), 0.70 ± 0.12(toluene),0.41 ± 0.09(m,p-xylenes), 0.16 ± 0.04(o-xylene), 0.023 ± 0.011(styrene), and 0.15 ± 0.02(ethylbenzene), respectively. The source apportionment results showed that around 23.3% of C6–C8 aromatics in urban Shanghai were from vehicular emissions, which meant that the non-vehicular emissions had more importance. These findings suggested that emission control of non-vehicular sources, i.e. industrial emissions, should also receive attention in addition to the control of vehicle-related emissions in Shanghai. The chemical removal of VOCs during the transport from emissions to the receptor site had a large impact on the apportionment results. Generally, the overestimation of vehicular contributions would occur when the VOC reaction rate constant with OH radicals(k OH) was larger than that of the vehicular indicator, while for species with smaller k OH than the vehicular indicator, the vehicular contribution would be underestimated by the method of characteristic ratios.
基金the National NaturalScience Foundation of China (NSFC) (Grant No. 61675080)FundamentalResearch Funds for the Central Universities (HUST: 2016YXMS021).
文摘Here we present a graphene photodetector ofwhich the graphene and structural system infraredabsorptions are enhanced by interface phonon polariton(IPhP) coupling. IPhPs are supported at the SiC/AlNinterface of device structure and used to excite interbandtransitions of the intrinsic graphene under gated-fieldtuning. The simulation results show that at normalincidence the absorbance of graphene or system reachesup to 43% or closes to unity in a mid-infrared frequencyrange. In addition, we found the peak-absorption frequencyis mainly decided by the AlN thickness, and it has ared-shift as the thickness decreases. This structure has greatapplication potential in graphene infrared detectiontechnology.