Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering...Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering motor rapidly rotates, extra force is directly superimposed on the original static loading error, which becomes one of the main sources of the final error. It is key to achieve ELS precise loading control for the entire EPS test bench. Therefore, a three-part compound control algorithm is proposed to improve the loading accuracy. First, a fuzzy proportional–integral plus feedforward controller with force feedback is presented. Second, a friction compensation algorithm is established to reduce the influence of friction. Then, the relationships between each quantity and the extra force are analyzed when the steering motor rapidly rotates, and a net torque feedforward compensation algorithm is proposed to eliminate the extra force. The compound control algorithm was verified through simulations and experiments. The results show that the tracking performance of the compound control algorithm satisfies the demands of engineering practice, and the extra force in the ELS system can be suppressed by the net torque corresponding to the actuator’s acceleration.展开更多
The purpose of this paper is to alleviate the potential safety problems associated with the human driver and the automatic system competing for the right of way due to different objectives by mitigating the human-mach...The purpose of this paper is to alleviate the potential safety problems associated with the human driver and the automatic system competing for the right of way due to different objectives by mitigating the human-machine conflict phenomenon in human-machine shared driving(HMSD)technology from the automation system.Firstly,a basic lane-changing trajectory algorithm based on the quintic polynomial in the Frenet coordinate system is developed.Then,in order to make the planned trajectory close to human behavior,naturalistic driving data is collected,based on which some lane-changing performance features are selected and analyzed.There are three aspects have been taken into consideration for the human-like lane-changing trajectory:vehicle dynamic stability performance,driving cost optimization,and collision avoidance.Finally,the HMSD experiments are conducted with the driving simulator to test the potential of the human-like lane-changing trajectory planning algorithm.The results demonstrate that the lane-changing trajectory planning algorithm with the highest degree of personalization is highly consistent with human driver behavior and consequently would potentially mitigate the human-machine conflict with the HMSD application.Furthermore,it could be further employed as an empirical trajectory prediction result.The algorithm employs the distribution state of the historical trajectory for human-like processing,simplifying the operational process and ensuring the credibility,integrity,and interpretability of the results.Moreover,in terms of optimization processing,the form of optimization search followed by collision avoidance detection is adopted to in principle reduce the calculation difficulty.Additionally,a new convex polygon collision detection method,namely the vertex embedding method,is proposed for collision avoidance detection.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 51505178)China Postdoctoral Science Foundation (Grant No. 2014M561289)。
文摘Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering motor rapidly rotates, extra force is directly superimposed on the original static loading error, which becomes one of the main sources of the final error. It is key to achieve ELS precise loading control for the entire EPS test bench. Therefore, a three-part compound control algorithm is proposed to improve the loading accuracy. First, a fuzzy proportional–integral plus feedforward controller with force feedback is presented. Second, a friction compensation algorithm is established to reduce the influence of friction. Then, the relationships between each quantity and the extra force are analyzed when the steering motor rapidly rotates, and a net torque feedforward compensation algorithm is proposed to eliminate the extra force. The compound control algorithm was verified through simulations and experiments. The results show that the tracking performance of the compound control algorithm satisfies the demands of engineering practice, and the extra force in the ELS system can be suppressed by the net torque corresponding to the actuator’s acceleration.
基金Open Fund of State Key Laboratory of Automobile Simulation and Control of Jilin University(20201111).
文摘The purpose of this paper is to alleviate the potential safety problems associated with the human driver and the automatic system competing for the right of way due to different objectives by mitigating the human-machine conflict phenomenon in human-machine shared driving(HMSD)technology from the automation system.Firstly,a basic lane-changing trajectory algorithm based on the quintic polynomial in the Frenet coordinate system is developed.Then,in order to make the planned trajectory close to human behavior,naturalistic driving data is collected,based on which some lane-changing performance features are selected and analyzed.There are three aspects have been taken into consideration for the human-like lane-changing trajectory:vehicle dynamic stability performance,driving cost optimization,and collision avoidance.Finally,the HMSD experiments are conducted with the driving simulator to test the potential of the human-like lane-changing trajectory planning algorithm.The results demonstrate that the lane-changing trajectory planning algorithm with the highest degree of personalization is highly consistent with human driver behavior and consequently would potentially mitigate the human-machine conflict with the HMSD application.Furthermore,it could be further employed as an empirical trajectory prediction result.The algorithm employs the distribution state of the historical trajectory for human-like processing,simplifying the operational process and ensuring the credibility,integrity,and interpretability of the results.Moreover,in terms of optimization processing,the form of optimization search followed by collision avoidance detection is adopted to in principle reduce the calculation difficulty.Additionally,a new convex polygon collision detection method,namely the vertex embedding method,is proposed for collision avoidance detection.