The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time perfor...The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.展开更多
As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
Light Detection and Ranging(LiDAR)sensors are popular in Simultaneous Localization and Mapping(SLAM)owing to their capability of obtaining ranging information actively.Researchers have attempted to use the intensity i...Light Detection and Ranging(LiDAR)sensors are popular in Simultaneous Localization and Mapping(SLAM)owing to their capability of obtaining ranging information actively.Researchers have attempted to use the intensity information that accompanies each range measurement to enhance LiDAR SLAM positioning accuracy.However,before employing LiDAR intensities in SLAM,a calibration operation is usually carried out so that the intensity is independent of the incident angle and range.The range is determined from the laser beam transmitting time.Therefore,the key to using LiDAR intensities in SLAM is to obtain the incident angle between the laser beam and target surface.In a complex environment,it is difficult to obtain the incident angle robustly.This procedure also complicates the data processing in SLAM and as a result,further application of the LiDAR intensity in SLAM is hampered.Motivated by this problem,in the present study,we propose a Hyperspectral LiDAR(HSL)-based-intensity calibration-free method to aid point cloud matching in SLAM.HSL employed in this study can obtain an eight-channel range accompanied by corresponding intensity measurements.Owing to the design of the laser,the eight-channel range and intensity were collected with the same incident angle and range.According to the laser beam radiation model,the ratio values between two randomly selected channels’intensities at an identical target are independent of the range information and incident angle.To test the proposed method,the HSL was employed to scan a wall with different coloured papers pasted on it(white,red,yellow,pink,and green)at four distinct positions along a corridor(with an interval of 60 cm in between two consecutive positions).Then,a ratio value vector was constructed for each scan.The ratio value vectors between consecutive laser scans were employed to match the point cloud.A classic Iterative Closest Point(ICP)algorithm was employed to estimate the HSL motion using the range information from the matched point clouds.According to the test results,we found that pink and green papers were distinctive at 650,690,and 720 nm.A ratio value vector was constructed using 650-nm spectral information against the reference channel.Furthermore,compared with the classic ICP using range information only,the proposed method that matched ratio value vectors presented an improved performance in heading angle estimation.For the best case in the field test,the proposed method enhanced the heading angle estimation by 72%,and showed an average 25.5%improvement in a featureless spatial testing environment.The results of the primary test indicated that the proposed method has the potential to aid point cloud matching in typical SLAM of real scenarios.展开更多
基金supported in part by National Key Research and Development Program under Grant No.2020YFB1708800China Postdoctoral Science Foundation under Grant No.2021M700385+5 种基金Guang Dong Basic and Applied Basic Research Foundation under Grant No.2021A1515110577Guangdong Key Research and Development Program under Grant No.2020B0101130007Central Guidance on Local Science and Technology Development Fund of Shanxi Province under Grant No.YDZJSX2022B019Fundamental Research Funds for Central Universities under Grant No.FRF-MP-20-37Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)under Grant No.FRF-IDRY-21-005National Natural Science Foundation of China under Grant No.62002026。
文摘The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
基金Academy of Finland projects“Centre of Excellence in Laser Scanning Research(CoE-LaSR)(307362)”Strategic Research Council project“Competence-Based Growth Through Integrated Disruptive Technologies of 3D Digitalization,Robotics,Geospatial Information and Image Processing/Computing-Point Cloud Ecosystem(314312)+3 种基金Additionally,Chinese Academy of Science(181811KYSB20160113,XDA22030202)Beijing Municipal Science and Technology Commission(Z181100001018036)Shanghai Science and Technology Foundations(18590712600)Jihua lab(X190211TE190)are acknowledged.
文摘Light Detection and Ranging(LiDAR)sensors are popular in Simultaneous Localization and Mapping(SLAM)owing to their capability of obtaining ranging information actively.Researchers have attempted to use the intensity information that accompanies each range measurement to enhance LiDAR SLAM positioning accuracy.However,before employing LiDAR intensities in SLAM,a calibration operation is usually carried out so that the intensity is independent of the incident angle and range.The range is determined from the laser beam transmitting time.Therefore,the key to using LiDAR intensities in SLAM is to obtain the incident angle between the laser beam and target surface.In a complex environment,it is difficult to obtain the incident angle robustly.This procedure also complicates the data processing in SLAM and as a result,further application of the LiDAR intensity in SLAM is hampered.Motivated by this problem,in the present study,we propose a Hyperspectral LiDAR(HSL)-based-intensity calibration-free method to aid point cloud matching in SLAM.HSL employed in this study can obtain an eight-channel range accompanied by corresponding intensity measurements.Owing to the design of the laser,the eight-channel range and intensity were collected with the same incident angle and range.According to the laser beam radiation model,the ratio values between two randomly selected channels’intensities at an identical target are independent of the range information and incident angle.To test the proposed method,the HSL was employed to scan a wall with different coloured papers pasted on it(white,red,yellow,pink,and green)at four distinct positions along a corridor(with an interval of 60 cm in between two consecutive positions).Then,a ratio value vector was constructed for each scan.The ratio value vectors between consecutive laser scans were employed to match the point cloud.A classic Iterative Closest Point(ICP)algorithm was employed to estimate the HSL motion using the range information from the matched point clouds.According to the test results,we found that pink and green papers were distinctive at 650,690,and 720 nm.A ratio value vector was constructed using 650-nm spectral information against the reference channel.Furthermore,compared with the classic ICP using range information only,the proposed method that matched ratio value vectors presented an improved performance in heading angle estimation.For the best case in the field test,the proposed method enhanced the heading angle estimation by 72%,and showed an average 25.5%improvement in a featureless spatial testing environment.The results of the primary test indicated that the proposed method has the potential to aid point cloud matching in typical SLAM of real scenarios.