期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks 被引量:10
1
作者 Zhongqi Zhu Zhiyuan Gong +7 位作者 Piao Qu Ziyong Li Sefiu Abolaji Rasaki Zhiyuan Liu Pei Wang Changyong Liu changshi lao Zhangwei Chen 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第2期279-290,共12页
Inkjet printing is a promising alternative for the fabrication of thin film components for solid oxide fuel cells(SOFCs) due to its contactless, mask free, and controllable printing process. In order to obtain satisfy... Inkjet printing is a promising alternative for the fabrication of thin film components for solid oxide fuel cells(SOFCs) due to its contactless, mask free, and controllable printing process. In order to obtain satisfying electrolyte thin layer structures in anode-supported SOFCs, the preparation of suitable electrolyte ceramic inks is a key. At present, such a kind of 8 mol% Y_(2)O_(3)-stabilized ZrO_(2)(8 YSZ) electrolyte ceramic ink with long-term stability and high solid loading(> 15 wt%) seems rare for precise inkjet printing, and a number of characterization and performance aspects of the inks, such as homogeneity, viscosity, and printability, should be studied. In this study, 8 YSZ ceramic inks of varied compositions were developed for inkjet printing of SOFC ceramic electrolyte layers. The dispersing effect of two types of dispersants, i.e., polyacrylic acid ammonium(PAANH4) and polyacrylic acid(PAA), were compared. The results show that ultrasonic dispersion treatment can help effectively disperse the ceramic particles in the inks. PAANH4 has a better dispersion effect for the inks developed in this study. The inks show excellent printable performance in the actual printing process. The stability of the ink can be maintained for a storage period of over 30 days with the help of initial ultrasonic dispersion. Finally, micron-size thin 8 YSZ electrolyte films were successfully fabricated through inkjet printing and sintering, based on the as-developed high solid loading 8 YSZ inks(20 wt%). The films show fully dense and intact structural morphology and smooth interfacial bonding, offering an improved structural quality of electrolyte for enhanced SOFC performance. 展开更多
关键词 inkjet printing water-based ceramic ink solid oxide fuel cell(SOFC)electrolyte 8YSZ ink stability rheological properties
原文传递
Novel 3D grid porous Li_(4)Ti_(5)O_(12) thick electrodes fabricated by 3D printing for high performance lithium-ion batteries 被引量:4
2
作者 Changyong LIU Yin QIU +5 位作者 Yanliang LIU Kun XU Ning ZHAO changshi lao Jun SHEN Zhangwei CHEN 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第2期295-307,共13页
Three-dimensional(3D)grid porous electrodes introduce vertically aligned pores as a convenient path for the transport of lithium-ions(Li-ions),thereby reducing the total transport distance of Li-ions and improving the... Three-dimensional(3D)grid porous electrodes introduce vertically aligned pores as a convenient path for the transport of lithium-ions(Li-ions),thereby reducing the total transport distance of Li-ions and improving the reaction kinetics.Although there have been other studies focusing on 3D electrodes fabricated by 3D printing,there still exists a gap between electrode design and their electrochemical performance.In this study,we try to bridge this gap through a comprehensive investigation on the effects of various electrode parameters including the electrode porosity,active material particle diameter,electrode electronic conductivity,electrode thickness,line width,and pore size on the electrochemical performance.Both numerical simulations and experimental investigations are conducted to systematically examine these effects.3D grid porous Li_(4)Ti_(5)O_(12)(LTO)thick electrodes are fabricated by low temperature direct writing technology and the electrodes with the thickness of 1085μm and areal mass loading of 39.44 mg·cm^(−2) are obtained.The electrodes display impressive electrochemical performance with the areal capacity of 5.88 mAh·cm^(−2)@1.0 C,areal energy density of 28.95 J·cm^(−2)@1.0 C,and areal power density of 8.04 mW·cm^(−2)@1.0 C.This study can provide design guidelines for obtaining 3D grid porous electrodes with superior electrochemical performance. 展开更多
关键词 three-dimensional(3D)porous thick electrodes Li_(4)Ti_(5)O_(12)(LTO) 3D printing lithium-ion(Li-ion)battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部