Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from inju...Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and KuT0 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These findings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and ac- celerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/ reperfusion.展开更多
DI-3n-butyiphthalide can effectively treat cerebral ischemia; however, the mechanisms underlying the effects of dl-3n-butylphthalide on microcirculation disorders following diffuse brain injury remain unclear. In this...DI-3n-butyiphthalide can effectively treat cerebral ischemia; however, the mechanisms underlying the effects of dl-3n-butylphthalide on microcirculation disorders following diffuse brain injury remain unclear. In this study, models of diffuse brain injury were established in Sprague-Dawley rats with the vertical impact method. DI-3n-butylphthalide at 80 and 160 mg/kg was given via intraperitoneal injection immediately after diffuse brain injury. Ultrastructural changes in the cerebral cortex were observed using electron microscopy. Cerebral blood flow was measured by laser Doppler flowmetry, vascular density was marked by tannic acid-ferric chloride staining, vascular permeability was es- timated by the Evans blue method, brain water content was measured using the dry-wet method, and rat behavior was measured by motor function and sensory function tests. At 6, 24, 48, and 72 hours after administration of dl-3n-butylphthalide, reduced cerebral ultrastructure damage, in- creased vascular density and cerebral blood flow, and improved motor and sensory functions were observed. Our findings demonstrate that dl-3n-butylphthalide may have protective effects against diffuse brain injury by ameliorating microcirculation disorder and reducing blood-brain barrier dam- age and cerebral edema.展开更多
Apolipoprotein E plays a crucial role in inhibiting chronic neurodegenerative processes. Howev-er, its impact on neurological function following diffuse brain injury is still unclear. This study was designed to evalua...Apolipoprotein E plays a crucial role in inhibiting chronic neurodegenerative processes. Howev-er, its impact on neurological function following diffuse brain injury is still unclear. This study was designed to evaluate the therapeutic effects and mechanisms of action of apolipoprotein E mimetic peptide on diffuse brain injury. Apolipoprotein E mimetic peptide was administered into the caudal vein of rats with diffuse brain injury before and after injury. We found that apo-lipoprotein E mimetic peptide signiifcantly decreased the number of apoptotic neurons, reduced extracellular signal-regulated kinase1/2 phosphorylation, down-regulated Bax and cytochrome c expression, decreased malondialdehyde content, and increased superoxide dismutase activity in a dose-dependent manner. These experimental ifndings demonstrate that apolipoprotein E mimetic peptide improves learning and memory function and protects against diffuse brain injury-induced apoptosis by inhibiting the extracellular signal-regulated kinase1/2-Bax mito-chondrial apoptotic pathway.展开更多
基金supported by the Hebei Province Natural Science Program,No.H2012401007a grant from the foundation Key Project of Hebei Province Education Ministry,No.ZD2010106
文摘Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and KuT0 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These findings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and ac- celerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/ reperfusion.
基金supported by the grants from Hebei Province Science and Technology Ministry,No.20276102DKey Project of Hebei Province Education Ministry,No.ZD2010106
文摘DI-3n-butyiphthalide can effectively treat cerebral ischemia; however, the mechanisms underlying the effects of dl-3n-butylphthalide on microcirculation disorders following diffuse brain injury remain unclear. In this study, models of diffuse brain injury were established in Sprague-Dawley rats with the vertical impact method. DI-3n-butylphthalide at 80 and 160 mg/kg was given via intraperitoneal injection immediately after diffuse brain injury. Ultrastructural changes in the cerebral cortex were observed using electron microscopy. Cerebral blood flow was measured by laser Doppler flowmetry, vascular density was marked by tannic acid-ferric chloride staining, vascular permeability was es- timated by the Evans blue method, brain water content was measured using the dry-wet method, and rat behavior was measured by motor function and sensory function tests. At 6, 24, 48, and 72 hours after administration of dl-3n-butylphthalide, reduced cerebral ultrastructure damage, in- creased vascular density and cerebral blood flow, and improved motor and sensory functions were observed. Our findings demonstrate that dl-3n-butylphthalide may have protective effects against diffuse brain injury by ameliorating microcirculation disorder and reducing blood-brain barrier dam- age and cerebral edema.
基金supported by Scientific Research and Development Plan of Hebei Province,No.20276102DKey Project of Scientific Research in Universities of Hebei Province in China,No.ZD2010106
文摘Apolipoprotein E plays a crucial role in inhibiting chronic neurodegenerative processes. Howev-er, its impact on neurological function following diffuse brain injury is still unclear. This study was designed to evaluate the therapeutic effects and mechanisms of action of apolipoprotein E mimetic peptide on diffuse brain injury. Apolipoprotein E mimetic peptide was administered into the caudal vein of rats with diffuse brain injury before and after injury. We found that apo-lipoprotein E mimetic peptide signiifcantly decreased the number of apoptotic neurons, reduced extracellular signal-regulated kinase1/2 phosphorylation, down-regulated Bax and cytochrome c expression, decreased malondialdehyde content, and increased superoxide dismutase activity in a dose-dependent manner. These experimental ifndings demonstrate that apolipoprotein E mimetic peptide improves learning and memory function and protects against diffuse brain injury-induced apoptosis by inhibiting the extracellular signal-regulated kinase1/2-Bax mito-chondrial apoptotic pathway.