As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and...As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.展开更多
For the problem of slow search and tortuous paths in the Rapidly Exploring Random Tree(RRT)algorithm,a feedback-biased sampling RRT,called FS-RRT,is proposedbasedon RRT.Firstly,toimprove the samplingefficiency of RRT ...For the problem of slow search and tortuous paths in the Rapidly Exploring Random Tree(RRT)algorithm,a feedback-biased sampling RRT,called FS-RRT,is proposedbasedon RRT.Firstly,toimprove the samplingefficiency of RRT to shorten the search time,the search area of the randomtree is restricted to improve the sampling efficiency.Secondly,to obtain better information about obstacles to shorten the path length,a feedback-biased sampling strategy is used instead of the traditional random sampling,the collision of the expanding node with an obstacle generates feedback information so that the next expanding node avoids expanding within a specific angle range.Thirdly,this paper proposes using the inverse optimization strategy to remove redundancy points from the initial path,making the path shorter and more accurate.Finally,to satisfy the smooth operation of the robot in practice,auxiliary points are used to optimize the cubic Bezier curve to avoid path-crossing obstacles when using the Bezier curve optimization.The experimental results demonstrate that,compared to the traditional RRT algorithm,the proposed FS-RRT algorithm performs favorably against mainstream algorithms regarding running time,number of search iterations,and path length.Moreover,the improved algorithm also performs well in a narrow obstacle environment,and its effectiveness is further confirmed by experimental verification.展开更多
The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.Ho...The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with the-charged-particle coincidence technique to measure the proton andexit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.展开更多
In this paper, we introduce a novel scheme for the separate training of deep learning-based autoencoders used for Channel State Information (CSI) feedback. Our distinct training approach caters to multiple users and b...In this paper, we introduce a novel scheme for the separate training of deep learning-based autoencoders used for Channel State Information (CSI) feedback. Our distinct training approach caters to multiple users and base stations, enabling independent and individualized local training. This ensures the more secure processing of data and algorithms, different from the commonly adopted joint training method. To maintain comparable performance with joint training, we present two distinct training methods: separate training decoder and separate training encoder. It’s noteworthy that conducting separate training for the encoder can pose additional challenges, due to its responsibility in acquiring a compressed representation of underlying data features. This complexity makes accommodating multiple pre-trained decoders for just one encoder a demanding task. To overcome this, we design an adaptation layer architecture that effectively minimizes performance losses. Moreover, the flexible training strategy empowers users and base stations to seamlessly incorporate distinct encoder and decoder structures into the system, significantly amplifying the system’s scalability. .展开更多
Fragaria vesca,commonly known as wild or woodland strawberry,is the most widely distributed diploid Fragaria species and is native to Europe and Asia.Because of its small plant size,low heterozygosity,and relative eas...Fragaria vesca,commonly known as wild or woodland strawberry,is the most widely distributed diploid Fragaria species and is native to Europe and Asia.Because of its small plant size,low heterozygosity,and relative ease of genetic transformation,F.vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011.However,its genomic contribution to octoploid cultivated strawberry remains a long-standing question.Here,we de novo assembled and annotated a telomere-to-telomere,gap-free genome of F.vesca‘Hawaii 4’,with all seven chromosomes assembled into single contigs,providing the highest completeness and assembly quality to date.The gap-free genome is 220785082 bp in length and encodes 36173 protein-coding gene models,including 1153 newly annotated genes.All 14 telomeres and seven centromeres were annotated within the seven chromosomes.Among the three previously recognized wild diploid strawberry ancestors,F.vesca,F.iinumae,and F.viridis,phylogenomic analysis showed that F.vesca and F.viridis are the ancestors of the cultivated octoploid strawberry F.×ananassa,and F.vesca is its closest relative.Three subgenomes of F.×ananassa belong to the F.vesca group,and one is sister to F.viridis.We anticipate that this high-quality,telomere-to-telomere,gap-free F.vesca genome,combined with our phylogenomic inference of the origin of cultivated strawberry,will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.展开更多
After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the cod...After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the coding theory in the past two decades.In this survey,we retrospect the history of polar codes and summarize the advancement in the past ten years.First,the primary principle of channel polarization is investigated such that the basic construction,coding method and the classic successive cancellation(SC)decoding are reviewed.Second,in order to improve the performance of the finite code length,we introduce the guiding principle and conclude five design criteria for the construction,design and implementation of the polar code in the practical communication system based on the exemplar schemes in the literature.Especially,we explain the design principle behind the concatenated coding and rate matching of polar codes in 5G wireless system.Furthermore,the improved SC decoding algorithms,such as SC list(SCL)decoding and SC stack(SCS)decoding etc.,are investigated and compared.Finally,the research prospects of polar codes for the future 6G communication system are explored,including the optimization of short polar codes,coding construction in fading channels,polar coded modulation and HARQ,and the polar coded transmission,namely polar processing.Predictably,as a new coding methodology,polar codes will shine a light on communication theory and unveil a revolution in transmission technology.展开更多
We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo_(2)As_(2) and NdCo_(2)As_(2).LaCo_(2)As_(2) is a soft metallic ferromagnet which exhibits purely intrinsic anomalous...We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo_(2)As_(2) and NdCo_(2)As_(2).LaCo_(2)As_(2) is a soft metallic ferromagnet which exhibits purely intrinsic anomalous Hall effect(AHE) due to Co-3d electrons. With Nd-4f electronic magnetism, ferrimagnetic NdCo_(2)As_(2) manifests pronounced sign reversal and multiple hysteresis loops in temperature-and field-dependent magnetization, Hall resistivity, and magnetoresistance, due to complicated magnetic structural changes. We reveal that the AHE for NdCo_(2)As_(2) is stemming from the Co sub-lattice and deduce its phase diagram which includes magnetic compensation and two meta-magnetic phase transitions. The sensitivity of the Hall effect on the details of the magnetic structures in ferrimagnetic NdCo_(2)As_(2) provides a unique opportunity to explore the magnetic interaction between 4f and 3d electrons and its impact on the electronic structure.展开更多
In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver comp...In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver components.The relay node decodes the received message.The relay node selectively re-encodes the message and transmits it to the destination node.Furthermore,in order to minimize the upper-bound of the block error probability,we propose a selection strategy to decide the proper re-encoded bit set by the relay.Simulation results are presented to illustrate the improvement in decoding performance of the proposed scheme compared to conventional relay schemes in both additive white Gaussian noise(AWGN)channel and Rayleigh fading channel(RFC).展开更多
To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model...To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.展开更多
Transition metal and rare earth intermetallics have been a fertile playground for research of various quantum states.We report detailed magnetic studies on Sm Mn_(2)Ge_(2),an anisotropic itinerant magnet with multiple...Transition metal and rare earth intermetallics have been a fertile playground for research of various quantum states.We report detailed magnetic studies on Sm Mn_(2)Ge_(2),an anisotropic itinerant magnet with multiple magnetic phases.The critical behavior of the ferromagnetic phase transition is investigated by employing the modified Arrott plot with the Kouvel-Fisher method.The critical temperature TCis determined to be around 342.7 K with critical exponents ofβ=0.417 andγ=1.122,and the interaction function is found to be J(r)~r^(-4.68),suggesting the coexistence of long-range and shortrange magnetic interactions.Our results contribute to the understanding of complex magnetism in Sm Mn_(2)Ge_(2),which may provide fundamental guidance in future spintronic applications.展开更多
We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields...We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields in low magnetic fields(<14 T)at 4.2 K,whereas polarization reversal is directly achieved by two opposite electric fields under high magnetic fields(<45 T).Interestingly,the polarization curve of rising and falling fields for H∥u(magnetic easy axis)is irreversible when the magnetic field is close to 52 T.In this case,the rising and falling polarization curves can be individually reversed by the electric field,and thus require five cycles to recover to the initial condition by the order of the applied electric fields(+E,-E,-E,+E,+E).In addition,we find that ferroelectric phaseⅣcan be tuned from parallel to antiparallel in relation to ferroelectric phase AF2 by applying a magnetic field approximated to the c axis.展开更多
Unmanned aerial vehicles(UAVs)can be employed as aerial base stations(BSs)due to their high mobility and flexible deployment.This paper focuses on a UAV-assisted wireless network,where users can be scheduled to get ac...Unmanned aerial vehicles(UAVs)can be employed as aerial base stations(BSs)due to their high mobility and flexible deployment.This paper focuses on a UAV-assisted wireless network,where users can be scheduled to get access to either an aerial BS or a terrestrial BS for uplink transmission.In contrast to state-of-the-art designs focusing on the instantaneous cost of the network,this paper aims at minimizing the long-term average transmit power consumed by the users by dynamically optimizing user association and power allocation in each time slot.Such a joint user association scheduling and power allocation problem can be formulated as a Markov decision process(MDP).Unfortunately,solving such an MDP problem with the conventional relative value iteration(RVI)can suffer from the curses of dimensionality,in the presence of a large number of users.As a countermeasure,we propose a distributed RVI algorithm to reduce the dimension of the MDP problem,such that the original problem can be decoupled into multiple solvable small-scale MDP problems.Simulation results reveal that the proposed algorithm can yield lower longterm average transmit power consumption than both the conventional RVI algorithm and a baseline algorithm with myopic policies.展开更多
This paper establishes a new layered flying ad hoc networks(FANETs) system of mobile edge computing(MEC) supported by multiple UAVs,where the first layer of user UAVs can perform tasks such as area coverage, and the s...This paper establishes a new layered flying ad hoc networks(FANETs) system of mobile edge computing(MEC) supported by multiple UAVs,where the first layer of user UAVs can perform tasks such as area coverage, and the second layer of MEC UAVs are deployed as flying MEC sever for user UAVs with computing-intensive tasks. In this system, we first divide the user UAVs into multiple clusters, and transmit the tasks of the cluster members(CMs) within a cluster to its cluster head(CH). Then, we need to determine whether each CH’ tasks are executed locally or offloaded to one of the MEC UAVs for remote execution(i.e., task scheduling), and how much resources should be allocated to each CH(i.e., resource allocation), as well as the trajectories of all MEC UAVs.We formulate an optimization problem with the aim of minimizing the overall energy consumption of all user UAVs, under the constraints of task completion deadline and computing resource, which is a mixed integer non-convex problem and hard to solve. We propose an iterative algorithm by applying block coordinate descent methods. To be specific, the task scheduling between CH UAVs and MEC UAVs, computing resource allocation, and MEC UAV trajectory are alternately optimized in each iteration. For the joint task scheduling and computing resource allocation subproblem and MEC UAV trajectory subproblem, we employ branch and bound method and continuous convex approximation technique to solve them,respectively. Extensive simulation results validate the superiority of our proposed approach to several benchmarks.展开更多
Vehicles can establish a collaborative environment cognition through sharing the original or processed sensor data from the vehicular sensors and status map. Clustering in the vehicular ad-hoc network(VANET) is crucia...Vehicles can establish a collaborative environment cognition through sharing the original or processed sensor data from the vehicular sensors and status map. Clustering in the vehicular ad-hoc network(VANET) is crucial for enhancing the stability of the collaborative environment. In this paper, the problem for clustering is innovatively transformed into a cutting graph problem. A novel clustering algorithm based on the Spectral Clustering algorithm and the improved force-directed algorithm is designed. It takes the average lifetime of all clusters as an optimization goal so that the stability of the entire system can be enhanced. A series of close-to-practical scenarios are generated by the Simulation of Urban Mobility(SUMO). The numerical results indicate that our approach has superior performance in maintaining whole cluster stability.展开更多
1-Methylcyclopropene(1-MCP)is an inhibitor of ethylene perception that is widely used to maintain the quality of several climacteric fruits during storage.A large body of literature now exists on the effects of 1-MCP ...1-Methylcyclopropene(1-MCP)is an inhibitor of ethylene perception that is widely used to maintain the quality of several climacteric fruits during storage.A large body of literature now exists on the effects of 1-MCP on climacteric fruit ripening for different species and environmental conditions,presenting an opportunity to use meta-analysis to systematically dissect these effects.We classified 44 ripening indicators of climacteric fruits into five categories:physiology and biochemistry,quality,enzyme activity,color,and volatiles.Meta-analysis showed that 1-MCP treatment reduced 20 of the 44 indicators by a minimum of 22%and increased 6 indicators by at least 20%.These effects were associated with positive effects on delaying ripening and maintaining quality.Of the seven moderating variables,species,1-MCP concentration,storage temperature and time had substantial impacts on the responses of fruit to 1-MCP treatment.Fruits from different species varied in their responses to 1-MCP,with the most pronounced responses observed in rosaceous fruits,especially apple,European pear fruits,and tropical fruits.The effect of gaseous 1-MCP was optimal at 1μl/l,with a treatment time of 12–24 h,when the storage temperature was 0℃for temperate fruits or 20℃for tropical fruits,and when the shelf temperature was 20℃,reflecting the majority of experimental approaches.These findings will help improve the efficacy of 1-MCP application during the storage of climacteric fruits,reduce fruit quality losses and increase commercial value.展开更多
基金supported by the National Natural Science Foundation of China(62305261,62305262)the Natural Science Foundation of Shaanxi Province(2024JC-YBMS-021,2024JC-YBMS-788,2023-JC-YB-065,2023-JC-QN-0693,2022JQ-652)+1 种基金the Xi’an Science and Technology Bureau of University Service Enterprise Project(23GXFW0043)the Cross disciplinary Research and Cultivation Project of Xi’an University of Architecture and Technology(2023JCPY-17)。
文摘As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.
基金provided by Shaanxi Province’s Key Research and Development Plan(No.2022NY-087).
文摘For the problem of slow search and tortuous paths in the Rapidly Exploring Random Tree(RRT)algorithm,a feedback-biased sampling RRT,called FS-RRT,is proposedbasedon RRT.Firstly,toimprove the samplingefficiency of RRT to shorten the search time,the search area of the randomtree is restricted to improve the sampling efficiency.Secondly,to obtain better information about obstacles to shorten the path length,a feedback-biased sampling strategy is used instead of the traditional random sampling,the collision of the expanding node with an obstacle generates feedback information so that the next expanding node avoids expanding within a specific angle range.Thirdly,this paper proposes using the inverse optimization strategy to remove redundancy points from the initial path,making the path shorter and more accurate.Finally,to satisfy the smooth operation of the robot in practice,auxiliary points are used to optimize the cubic Bezier curve to avoid path-crossing obstacles when using the Bezier curve optimization.The experimental results demonstrate that,compared to the traditional RRT algorithm,the proposed FS-RRT algorithm performs favorably against mainstream algorithms regarding running time,number of search iterations,and path length.Moreover,the improved algorithm also performs well in a narrow obstacle environment,and its effectiveness is further confirmed by experimental verification.
基金supported by the National Key Research and Development Project(No.2022YFA1602301)the National Natural Science Foundation of China(Nos.U2267205,12275361,12125509,12222514,11961141003,12005304)the CAST Young Talent Support Plan,the CNNC Science Fund for Talented Young Scholars,and the Continuous-Support Basic Scientific Research Project.
文摘The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with the-charged-particle coincidence technique to measure the proton andexit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.
文摘In this paper, we introduce a novel scheme for the separate training of deep learning-based autoencoders used for Channel State Information (CSI) feedback. Our distinct training approach caters to multiple users and base stations, enabling independent and individualized local training. This ensures the more secure processing of data and algorithms, different from the commonly adopted joint training method. To maintain comparable performance with joint training, we present two distinct training methods: separate training decoder and separate training encoder. It’s noteworthy that conducting separate training for the encoder can pose additional challenges, due to its responsibility in acquiring a compressed representation of underlying data features. This complexity makes accommodating multiple pre-trained decoders for just one encoder a demanding task. To overcome this, we design an adaptation layer architecture that effectively minimizes performance losses. Moreover, the flexible training strategy empowers users and base stations to seamlessly incorporate distinct encoder and decoder structures into the system, significantly amplifying the system’s scalability. .
基金funding from the National Natural Science Foundation of China(32172614)a startup fund fromHainan University and a Hainan Province Science and Technology Special Fund(ZDYF2023XDNY050).
文摘Fragaria vesca,commonly known as wild or woodland strawberry,is the most widely distributed diploid Fragaria species and is native to Europe and Asia.Because of its small plant size,low heterozygosity,and relative ease of genetic transformation,F.vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011.However,its genomic contribution to octoploid cultivated strawberry remains a long-standing question.Here,we de novo assembled and annotated a telomere-to-telomere,gap-free genome of F.vesca‘Hawaii 4’,with all seven chromosomes assembled into single contigs,providing the highest completeness and assembly quality to date.The gap-free genome is 220785082 bp in length and encodes 36173 protein-coding gene models,including 1153 newly annotated genes.All 14 telomeres and seven centromeres were annotated within the seven chromosomes.Among the three previously recognized wild diploid strawberry ancestors,F.vesca,F.iinumae,and F.viridis,phylogenomic analysis showed that F.vesca and F.viridis are the ancestors of the cultivated octoploid strawberry F.×ananassa,and F.vesca is its closest relative.Three subgenomes of F.×ananassa belong to the F.vesca group,and one is sister to F.viridis.We anticipate that this high-quality,telomere-to-telomere,gap-free F.vesca genome,combined with our phylogenomic inference of the origin of cultivated strawberry,will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.
基金supported in part by the Key Program of National Natural Science Foundation of China (No.92067202)in part by the National Natural Science Foundation of China (No.62071058)in part by the Major Key Project of PCL (PCL2021A15)。
文摘After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the coding theory in the past two decades.In this survey,we retrospect the history of polar codes and summarize the advancement in the past ten years.First,the primary principle of channel polarization is investigated such that the basic construction,coding method and the classic successive cancellation(SC)decoding are reviewed.Second,in order to improve the performance of the finite code length,we introduce the guiding principle and conclude five design criteria for the construction,design and implementation of the polar code in the practical communication system based on the exemplar schemes in the literature.Especially,we explain the design principle behind the concatenated coding and rate matching of polar codes in 5G wireless system.Furthermore,the improved SC decoding algorithms,such as SC list(SCL)decoding and SC stack(SCS)decoding etc.,are investigated and compared.Finally,the research prospects of polar codes for the future 6G communication system are explored,including the optimization of short polar codes,coding construction in fading channels,polar coded modulation and HARQ,and the polar coded transmission,namely polar processing.Predictably,as a new coding methodology,polar codes will shine a light on communication theory and unveil a revolution in transmission technology.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB1502502)the National Natural Science Foundation of China(Grant Nos.12141002 and 12225401)+6 种基金the Fund from Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratorysupported by the Interdisciplinary Program of Wuhan National High Magnetic Field Center(Grant No.WHMFC202123)Huazhong University of Science and Technologysupported by the National Natural Science Foundation of China(Grant Nos.12074041 and 11674030)the Foundation of the National Key Laboratory of Shock Wave and Detonation Physics(Grant No.6142A03191005)the National Key Research and Development Program of China(Grant No.2016YFA0302300)the startup funding of Beijing Normal University。
文摘We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo_(2)As_(2) and NdCo_(2)As_(2).LaCo_(2)As_(2) is a soft metallic ferromagnet which exhibits purely intrinsic anomalous Hall effect(AHE) due to Co-3d electrons. With Nd-4f electronic magnetism, ferrimagnetic NdCo_(2)As_(2) manifests pronounced sign reversal and multiple hysteresis loops in temperature-and field-dependent magnetization, Hall resistivity, and magnetoresistance, due to complicated magnetic structural changes. We reveal that the AHE for NdCo_(2)As_(2) is stemming from the Co sub-lattice and deduce its phase diagram which includes magnetic compensation and two meta-magnetic phase transitions. The sensitivity of the Hall effect on the details of the magnetic structures in ferrimagnetic NdCo_(2)As_(2) provides a unique opportunity to explore the magnetic interaction between 4f and 3d electrons and its impact on the electronic structure.
基金supported in part by the National Natural Science Foundation of China under Grant 92067202,Grant 62071058.
文摘In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver components.The relay node decodes the received message.The relay node selectively re-encodes the message and transmits it to the destination node.Furthermore,in order to minimize the upper-bound of the block error probability,we propose a selection strategy to decide the proper re-encoded bit set by the relay.Simulation results are presented to illustrate the improvement in decoding performance of the proposed scheme compared to conventional relay schemes in both additive white Gaussian noise(AWGN)channel and Rayleigh fading channel(RFC).
基金Funding for this research was provided by 511 Shaanxi Province’s Key Research and Development Plan(No.2022NY-087).
文摘To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1600204)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302802)+2 种基金the National Natural Science Foundation of China(Grant Nos.U1832214,U2032213,12104461,and 12074135)the High Magnetic Field Laboratory of Anhuisupported by the Start-up Project of Anhui University(Grant No.S020318001/020)。
文摘Transition metal and rare earth intermetallics have been a fertile playground for research of various quantum states.We report detailed magnetic studies on Sm Mn_(2)Ge_(2),an anisotropic itinerant magnet with multiple magnetic phases.The critical behavior of the ferromagnetic phase transition is investigated by employing the modified Arrott plot with the Kouvel-Fisher method.The critical temperature TCis determined to be around 342.7 K with critical exponents ofβ=0.417 andγ=1.122,and the interaction function is found to be J(r)~r^(-4.68),suggesting the coexistence of long-range and shortrange magnetic interactions.Our results contribute to the understanding of complex magnetism in Sm Mn_(2)Ge_(2),which may provide fundamental guidance in future spintronic applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074135,12104388,and 52272219)Nanyang Normal University,the Natural Science Foundation of Henan Province (Grant Nos.222300420255 and 232300421220)the Key Scientific and Technological Projiect of Technology Depeartment of Henan Province of China (Grant Nos.222102230105 and 212102210448)。
文摘We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields in low magnetic fields(<14 T)at 4.2 K,whereas polarization reversal is directly achieved by two opposite electric fields under high magnetic fields(<45 T).Interestingly,the polarization curve of rising and falling fields for H∥u(magnetic easy axis)is irreversible when the magnetic field is close to 52 T.In this case,the rising and falling polarization curves can be individually reversed by the electric field,and thus require five cycles to recover to the initial condition by the order of the applied electric fields(+E,-E,-E,+E,+E).In addition,we find that ferroelectric phaseⅣcan be tuned from parallel to antiparallel in relation to ferroelectric phase AF2 by applying a magnetic field approximated to the c axis.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61901216,61631020 and 61827801the Natural Science Foundation of Jiangsu Province under Grant BK20190400+1 种基金the open research fund of National Mobile Communications Research Laboratory,Southeast University(No.2020D08)the Foundation of Graduate Innovation Center in NUAA under Grant No.KFJJ20190408.
文摘Unmanned aerial vehicles(UAVs)can be employed as aerial base stations(BSs)due to their high mobility and flexible deployment.This paper focuses on a UAV-assisted wireless network,where users can be scheduled to get access to either an aerial BS or a terrestrial BS for uplink transmission.In contrast to state-of-the-art designs focusing on the instantaneous cost of the network,this paper aims at minimizing the long-term average transmit power consumed by the users by dynamically optimizing user association and power allocation in each time slot.Such a joint user association scheduling and power allocation problem can be formulated as a Markov decision process(MDP).Unfortunately,solving such an MDP problem with the conventional relative value iteration(RVI)can suffer from the curses of dimensionality,in the presence of a large number of users.As a countermeasure,we propose a distributed RVI algorithm to reduce the dimension of the MDP problem,such that the original problem can be decoupled into multiple solvable small-scale MDP problems.Simulation results reveal that the proposed algorithm can yield lower longterm average transmit power consumption than both the conventional RVI algorithm and a baseline algorithm with myopic policies.
基金supported in part by the National Natural Science Foundation of China under Grant No.61931011in part by the Primary Research & Developement Plan of Jiangsu Province No. BE2021013-4+2 种基金in part by the National Natural Science Foundation of China under Grant No. 62072303in part by the National Postdoctoral Program for Innovative Talents of China No. BX20190202in part by the Open Project Program of the Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space No. KF20202105。
文摘This paper establishes a new layered flying ad hoc networks(FANETs) system of mobile edge computing(MEC) supported by multiple UAVs,where the first layer of user UAVs can perform tasks such as area coverage, and the second layer of MEC UAVs are deployed as flying MEC sever for user UAVs with computing-intensive tasks. In this system, we first divide the user UAVs into multiple clusters, and transmit the tasks of the cluster members(CMs) within a cluster to its cluster head(CH). Then, we need to determine whether each CH’ tasks are executed locally or offloaded to one of the MEC UAVs for remote execution(i.e., task scheduling), and how much resources should be allocated to each CH(i.e., resource allocation), as well as the trajectories of all MEC UAVs.We formulate an optimization problem with the aim of minimizing the overall energy consumption of all user UAVs, under the constraints of task completion deadline and computing resource, which is a mixed integer non-convex problem and hard to solve. We propose an iterative algorithm by applying block coordinate descent methods. To be specific, the task scheduling between CH UAVs and MEC UAVs, computing resource allocation, and MEC UAV trajectory are alternately optimized in each iteration. For the joint task scheduling and computing resource allocation subproblem and MEC UAV trajectory subproblem, we employ branch and bound method and continuous convex approximation technique to solve them,respectively. Extensive simulation results validate the superiority of our proposed approach to several benchmarks.
基金supported in part by National Key R&D Program of China under Grant 2018YFB1800800National NSF of China under Grant 61827801,61801218+2 种基金by the open research fund of Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space(Nanjing Univ.Aeronaut.Astronaut.)(No.KF20181913)in part by the Natural Science Foundation of Jiangsu Province under Grant BK20180420by the Open Foundation for Graduate Innovation of NUAA(Grant NO.kfjj20190417).
文摘Vehicles can establish a collaborative environment cognition through sharing the original or processed sensor data from the vehicular sensors and status map. Clustering in the vehicular ad-hoc network(VANET) is crucial for enhancing the stability of the collaborative environment. In this paper, the problem for clustering is innovatively transformed into a cutting graph problem. A novel clustering algorithm based on the Spectral Clustering algorithm and the improved force-directed algorithm is designed. It takes the average lifetime of all clusters as an optimization goal so that the stability of the entire system can be enhanced. A series of close-to-practical scenarios are generated by the Simulation of Urban Mobility(SUMO). The numerical results indicate that our approach has superior performance in maintaining whole cluster stability.
基金supported in part by the Fundamental Research Funds for the Central Universities(KYZ201843)the Priority Academic Program Development of Jiangsu Higher Education Institutions and the open funds of the State Key Laboratory of Crop Genetics and Germplasm Enhancement(ZW201813).
文摘1-Methylcyclopropene(1-MCP)is an inhibitor of ethylene perception that is widely used to maintain the quality of several climacteric fruits during storage.A large body of literature now exists on the effects of 1-MCP on climacteric fruit ripening for different species and environmental conditions,presenting an opportunity to use meta-analysis to systematically dissect these effects.We classified 44 ripening indicators of climacteric fruits into five categories:physiology and biochemistry,quality,enzyme activity,color,and volatiles.Meta-analysis showed that 1-MCP treatment reduced 20 of the 44 indicators by a minimum of 22%and increased 6 indicators by at least 20%.These effects were associated with positive effects on delaying ripening and maintaining quality.Of the seven moderating variables,species,1-MCP concentration,storage temperature and time had substantial impacts on the responses of fruit to 1-MCP treatment.Fruits from different species varied in their responses to 1-MCP,with the most pronounced responses observed in rosaceous fruits,especially apple,European pear fruits,and tropical fruits.The effect of gaseous 1-MCP was optimal at 1μl/l,with a treatment time of 12–24 h,when the storage temperature was 0℃for temperate fruits or 20℃for tropical fruits,and when the shelf temperature was 20℃,reflecting the majority of experimental approaches.These findings will help improve the efficacy of 1-MCP application during the storage of climacteric fruits,reduce fruit quality losses and increase commercial value.