The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a di...The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.展开更多
With the development of cutting-edge multi-object spectrographs,fiber positioners located in the focal plane are being scaled down in size,and miniature hollow-cup Permanent Magnet motors are now being considered as a...With the development of cutting-edge multi-object spectrographs,fiber positioners located in the focal plane are being scaled down in size,and miniature hollow-cup Permanent Magnet motors are now being considered as a suitable replacement for Faulhaber Precistep stepper motors.However,the small electrical time constant of such coreless motors poses a challenge,as the problem of severe commutation torque ripple in a fiber positioner running a position loop has been tricky.To overcome this challenge,it is advised to increase the Pulse Width Modulation(PWM)frequency as much as possible to mitigate the effects of the current fluctuation.This must be done while ensuring adequate resolution of the PWM generator.By employing a voltage open-loop field-oriented control based on a modulation frequency of 1 MHz,the drive current only costs 25 m A under a 3.3 V power supply.The sine degree of phase current is immaculate,and the repeat positioning accuracy can reach 2μm.Moreover,it is possible to further shrink the bill of devices and the layout area of the Printed Circuit Board,especially in sizesensitive applications.This device has been developed under the new generation of The Large Sky Area MultiObject Fiber Spectroscopic Telescope.展开更多
Vitellogenins(VITs)are the most abundant proteins in adult hermaphrodite Caenorhabditis elegans.VITs are synthesized in the intes-tine,secreted to the pseudocoelom,matured into yolk proteins,and finally deposited in o...Vitellogenins(VITs)are the most abundant proteins in adult hermaphrodite Caenorhabditis elegans.VITs are synthesized in the intes-tine,secreted to the pseudocoelom,matured into yolk proteins,and finally deposited in oocytes as nutrients for progeny development.How VITs are secreted out of the intestine remains unclear.Using immuno-electron microscopy(immuno-EM),we localize intestinal VITs along an exocytic pathway consisting of the rough endoplasmic reticulum(ER),the Golgi,and the lipid bilayer-bounded VIT vesicles(VVs).This suggests that the classic exocytotic pathway mediates the secretion of VITs from the intestine to the pseudocoe-lom.We also show that pseudocoelomic yolk patches(PYPs)are membrane-less and amorphous.The different VITs/yolk proteins are packed as a mixture into the above structures.The size of VVs can vary with the VIT levels and the age of the worm.On adult Day 2(AD 2),intestinal VVs(~200 nm in diameter)are smaller than gonadal yolk organelles(YOs,~500 nm in diameter).VVs,PYPs,and YOs share a uniform medium electron density by conventional EM.The morphological profiles documented in this study serve as a refer-ence for future studies of VITs/yolk proteins.展开更多
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) is a special reflecting Schmidt telescope. LAMOST’s special design allows both a large aperture (effecti...The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) is a special reflecting Schmidt telescope. LAMOST’s special design allows both a large aperture (effective aperture of 3.6 m–4.9 m) and a wide field of view (FOV) (5°). It has an innovative active reflecting Schmidt configuration which continuously changes the mirror’s surface that adjusts during the observation process and combines thin deformable mirror active optics with segmented active optics. Its primary mirror (6.67m×6.05 m) and active Schmidt mirror (5.74m×4.40 m) are both segmented, and composed of 37 and 24 hexagonal sub-mirrors respectively. By using a parallel controllable fiber positioning technique, the focal surface of 1.75 m in diameter can accommodate 4000 optical fibers. Also, LAMOST has 16 spectrographs with 32 CCD cameras. LAMOST will be the telescope with the highest rate of spectral acquisition. As a national large scientific project, the LAMOST project was formally proposed in 1996, and approved by the Chinese government in 1997. The construction started in 2001, was completed in 2008 and passed the official acceptance in June 2009. The LAMOST pilot survey was started in October 2011 and the spectroscopic survey will launch in September 2012. Up to now, LAMOST has released more than 480 000 spectra of objects. LAMOST will make an important contribution to the study of the large-scale structure of the Universe, structure and evolution of the Galaxy, and cross-identification of multiwaveband properties in celestial objects.展开更多
The Large sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) general survey is a spectroscopic survey that will eventually cover approximately half of the celestial sphere and collect 10 million spectra of ...The Large sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) general survey is a spectroscopic survey that will eventually cover approximately half of the celestial sphere and collect 10 million spectra of stars, galaxies and QSOs. Objects in both the pilot survey and the first year regular survey are included in the LAMOST DR1. The pilot survey started in October 2011 and ended in June 2012, and the data have been released to the public as the LAMOST Pilot Data Release in August 2012. The regular survey started in September 2012, and completed its first year of operation in June 2013. The LAMOST DR1 includes a total of 1202 plates containing 2 955 336 spectra, of which 1 790 879 spectra have observed signalto-noise ratio(SNR) ≥ 10. All data with SNR ≥ 2 are formally released as LAMOST DR1 under the LAMOST data policy. This data release contains a total of 2 204 696 spectra, of which 1 944 329 are stellar spectra, 12 082 are galaxy spectra and 5017 are quasars. The DR1 not only includes spectra, but also three stellar catalogs with measured parameters: late A,FGK-type stars with high quality spectra(1 061 918 entries), A-type stars(100 073 entries), and M-type stars(121 522 entries). This paper introduces the survey design, the observational and instrumental limitations, data reduction and analysis, and some caveats. A description of the FITS structure of spectral files and parameter catalogs is also provided.展开更多
This paper describes the data release of the LAMOST pilot survey, which includes data reduction, calibration, spectral analysis, data products and data access. The accuracy of the released data and the information abo...This paper describes the data release of the LAMOST pilot survey, which includes data reduction, calibration, spectral analysis, data products and data access. The accuracy of the released data and the information about the FITS headers of spectra are also introduced. The released data set includes 319 000 spectra and a catalog of these objects.展开更多
The energy efficiency(EE) for the full-duplex massive multi-input multi-output(MIMO) system is investigated. Given the transmit powers of both the uplink and the downlink, the closed-form solutions of the optimal ...The energy efficiency(EE) for the full-duplex massive multi-input multi-output(MIMO) system is investigated. Given the transmit powers of both the uplink and the downlink, the closed-form solutions of the optimal number of antennas and the maximum EE are achieved in the high regime of the signal-to-noise ratio(SNR). It is shown that the optimal number of antennas and the maximum EE gets larger with the increase in user numbers. To further improve the EE, an optimization algorithm with low complexity is proposed to jointly determine the number of antennas and the transmit powers of both the uplink and the downlink. It is shown that, the proposed algorithm can achieve the system performance very close to the exhaustive search.展开更多
Vehicular Edge Computing(VEC)is a promising technique to accommodate the computation-intensive and delaysensitive tasks through offloading the tasks to the RoadSide-Unit(RSU)equipped with edge computing servers or nei...Vehicular Edge Computing(VEC)is a promising technique to accommodate the computation-intensive and delaysensitive tasks through offloading the tasks to the RoadSide-Unit(RSU)equipped with edge computing servers or neighboring vehicles.Nevertheless,the limited computation resources of edge computing servers and the mobility of vehicles make the offloading policy design very challenging.In this context,through considering the potential transmission gains brought by the mobility of vehicles,we propose an efficient computation offloading and resource allocation scheme in VEC networks with two kinds of offloading modes,i.e.,Vehicle to Vehicle(V2V)and Vehicle to RSU(V2R).We define a new cost function for vehicular users by incorporating the vehicles’offloading delay,energy consumption,and expenses with a differentiated pricing strategy,as well as the transmission gain.An optimization problem is formulated to minimize the average cost of all the task vehicles under the latency and computation capacity constraints.A distributed iterative algorithm is proposed by decoupling the problem into two subproblems for the offloading mode selection and the resource allocation.Matching theorybased and Lagrangian-based algorithms are proposed to solve the two subproblems,respectively.Simulation results show the proposed algorithm achieves low complexity and significantly improves the system performance compared with three benchmark schemes.展开更多
The double revolving fiber positioning technology is one of the key technologies for the success of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST).The accuracy of fiber positioning will directly...The double revolving fiber positioning technology is one of the key technologies for the success of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST).The accuracy of fiber positioning will directly affect the observation efficiency of LAMOST.To achieve higher fiber positioning accuracy,the original open-loop controlled fiber positioning system urgently needs to be upgraded into a closed-loop control system.The fiber detection is the most important part of the closed-loop controlled fiber positioning system.The back-illuminated detection method is usually used to detect the fiber position by directly detecting the light spot generated at the fiber end in the multi-fiber spectral surveys.In this paper,we introduce a new method to measure the fiber position based on the image of the front-illuminated LAMOST focal plane.The front-illuminated image does not require lighting devices inside the spectrograph,and it could reduce the instability and light pollution in the spectrograph end.Our method measures the fiber position by fitting the profile of the fiber pinhole with a 2D Gaussian function.A series of tests show that the relative position measurement precision of the front-illuminated method is about 012,and the method could have the same accuracy as the back-illuminated method once the system bias is calibrated by a simple radial correction function.The required fiber positioning accuracy of LAMOST is 04,and the new method satisfies the requirement of LAMOST fiber detection accuracy and could be used in the closed-loop fiber control system.展开更多
This paper concentrates on the secure consensus problem of networked mechanical/Euler–Lagrange systems.First,a new periodic event-triggered(PET)secure distributed observer is proposed to estimate the leader informati...This paper concentrates on the secure consensus problem of networked mechanical/Euler–Lagrange systems.First,a new periodic event-triggered(PET)secure distributed observer is proposed to estimate the leader information.The proposed distributed observer only relies on the PET data from its neighbors,which can significantly reduce the communication and computational burden.More importantly,it is secure in the sense that it can work normally regardless of the Denial-of-Service(DoS)attacks.Second,based on the proposed distributed observer,an adaptive fuzzy control law is proposed for each Euler–Lagrange system.A PET mechanism is integrated into the controller,which can reduce the control update.This is helpful for both energy saving and fault tolerance of actuators.Moreover,the PET mechanism naturally makes the controller easy to be implemented in digital platform.The property of fuzzy logic systems and Gronwall inequality are skillfully utilized to show the stability of the closed-loop system.Finally,the proposed control scheme is verified on real Euler–Lagrange systems,which contain a robot manipulator and several servo motors.展开更多
In recent years,cooperative coverage control of multi-agent system(MAS)has attracted plenty of researchers in various fields[1,2].Different from multi-agent consensus or synchronization,multi-agent coverage control ca...In recent years,cooperative coverage control of multi-agent system(MAS)has attracted plenty of researchers in various fields[1,2].Different from multi-agent consensus or synchronization,multi-agent coverage control cares about how to coordinate a team of agents for effectively monitoring or covering a given terrain,which inevitably gives rise to the interaction between individual dynamics and external environments.Nevertheless,environmental uncertainties that include static uncertainties and dynamic uncertainties and limited sensing capabilities of a single agent make it a great challenge to design control algorithms of MAS for achieving the desired coverage performance.展开更多
In industrial buildings,the presence of overhead cranes severely affects roof exhaust ventilation systems when capturing and discharging fumes,resulting in severe deterioration of the indoor plant environment.In this ...In industrial buildings,the presence of overhead cranes severely affects roof exhaust ventilation systems when capturing and discharging fumes,resulting in severe deterioration of the indoor plant environment.In this study,an overhead crane-based ventilation auxiliary device,called overhead crane fume-collecting hood(CFCH),is proposed to guide pollutants blocked by the overhead crane back to the roof exhaust hood.The airflow characteristics and pollutant distribution under the three modes of no overhead crane,overhead crane,and overhead crane+CFCH were compared using numerical simulations.Subsequently,the effects of the CFCH length(a),width(b),and height(h)on the pollutant capture performance were determined through orthogonal experiments and computational fluid dynamics.Finally,the pollutant capture efficiency(PCE)of the optimal CFCH was investigated considering different exhaust airflow rates.The results showed that the pollutants captured by the CFCH can be classified into directly and secondary captured pollutants,with the directly captured pollutants dominating.In addition,with the introduction of different sizes of CFCH around the overhead crane girders,the PCE significantly improved by 49.9%–74.6%.The length,width,and height of the CFCH on the PCE were statistically significant,and the priority of the three factors was as follows:h>b>a.The PCE decreased with increasing a,initially increased and then decreased with increasing b,and increased with h.Subsequently,when the optimal CFCH was used,the excessive exhaust air rate had no evident PCE improvement.This provides a new concept for the control of pollutants in industrial buildings and provides a theoretical basis for the design of CFCHs.展开更多
基金This work is supported by“the Fundamental Research Funds for the Central Universities”,111 project No.B20019Shanghai Natural Science Foundation,grant No.19ZR1466800.
文摘The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.
文摘With the development of cutting-edge multi-object spectrographs,fiber positioners located in the focal plane are being scaled down in size,and miniature hollow-cup Permanent Magnet motors are now being considered as a suitable replacement for Faulhaber Precistep stepper motors.However,the small electrical time constant of such coreless motors poses a challenge,as the problem of severe commutation torque ripple in a fiber positioner running a position loop has been tricky.To overcome this challenge,it is advised to increase the Pulse Width Modulation(PWM)frequency as much as possible to mitigate the effects of the current fluctuation.This must be done while ensuring adequate resolution of the PWM generator.By employing a voltage open-loop field-oriented control based on a modulation frequency of 1 MHz,the drive current only costs 25 m A under a 3.3 V power supply.The sine degree of phase current is immaculate,and the repeat positioning accuracy can reach 2μm.Moreover,it is possible to further shrink the bill of devices and the layout area of the Printed Circuit Board,especially in sizesensitive applications.This device has been developed under the new generation of The Large Sky Area MultiObject Fiber Spectroscopic Telescope.
基金funded by the National Natural Science Foundation of China(NSFC-ISF 32061143020 to M.Q.D.,31925026 to F.S.,and 31501160 to X.X.L.)the Ministry of Science and Technology of the People's Republic of China(institutional grants to NIBS,Beijing,a fund of the National High-Level Talents Special Support Program to M.Q.D.)Beijing Municipal Science and Technology Commission(institutional grants to NIBS,Beijing and a fund for cultivation and development of innovation base to M.Q.D.).
文摘Vitellogenins(VITs)are the most abundant proteins in adult hermaphrodite Caenorhabditis elegans.VITs are synthesized in the intes-tine,secreted to the pseudocoelom,matured into yolk proteins,and finally deposited in oocytes as nutrients for progeny development.How VITs are secreted out of the intestine remains unclear.Using immuno-electron microscopy(immuno-EM),we localize intestinal VITs along an exocytic pathway consisting of the rough endoplasmic reticulum(ER),the Golgi,and the lipid bilayer-bounded VIT vesicles(VVs).This suggests that the classic exocytotic pathway mediates the secretion of VITs from the intestine to the pseudocoe-lom.We also show that pseudocoelomic yolk patches(PYPs)are membrane-less and amorphous.The different VITs/yolk proteins are packed as a mixture into the above structures.The size of VVs can vary with the VIT levels and the age of the worm.On adult Day 2(AD 2),intestinal VVs(~200 nm in diameter)are smaller than gonadal yolk organelles(YOs,~500 nm in diameter).VVs,PYPs,and YOs share a uniform medium electron density by conventional EM.The morphological profiles documented in this study serve as a refer-ence for future studies of VITs/yolk proteins.
文摘The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) is a special reflecting Schmidt telescope. LAMOST’s special design allows both a large aperture (effective aperture of 3.6 m–4.9 m) and a wide field of view (FOV) (5°). It has an innovative active reflecting Schmidt configuration which continuously changes the mirror’s surface that adjusts during the observation process and combines thin deformable mirror active optics with segmented active optics. Its primary mirror (6.67m×6.05 m) and active Schmidt mirror (5.74m×4.40 m) are both segmented, and composed of 37 and 24 hexagonal sub-mirrors respectively. By using a parallel controllable fiber positioning technique, the focal surface of 1.75 m in diameter can accommodate 4000 optical fibers. Also, LAMOST has 16 spectrographs with 32 CCD cameras. LAMOST will be the telescope with the highest rate of spectral acquisition. As a national large scientific project, the LAMOST project was formally proposed in 1996, and approved by the Chinese government in 1997. The construction started in 2001, was completed in 2008 and passed the official acceptance in June 2009. The LAMOST pilot survey was started in October 2011 and the spectroscopic survey will launch in September 2012. Up to now, LAMOST has released more than 480 000 spectra of objects. LAMOST will make an important contribution to the study of the large-scale structure of the Universe, structure and evolution of the Galaxy, and cross-identification of multiwaveband properties in celestial objects.
基金funded by the National Basic Research Program of China (973 Program, 2014CB845700)the National Natural Science Foundation of China (Grant Nos. 11390371)Funding for the project has been provided by the National Development and Reform Commission
文摘The Large sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) general survey is a spectroscopic survey that will eventually cover approximately half of the celestial sphere and collect 10 million spectra of stars, galaxies and QSOs. Objects in both the pilot survey and the first year regular survey are included in the LAMOST DR1. The pilot survey started in October 2011 and ended in June 2012, and the data have been released to the public as the LAMOST Pilot Data Release in August 2012. The regular survey started in September 2012, and completed its first year of operation in June 2013. The LAMOST DR1 includes a total of 1202 plates containing 2 955 336 spectra, of which 1 790 879 spectra have observed signalto-noise ratio(SNR) ≥ 10. All data with SNR ≥ 2 are formally released as LAMOST DR1 under the LAMOST data policy. This data release contains a total of 2 204 696 spectra, of which 1 944 329 are stellar spectra, 12 082 are galaxy spectra and 5017 are quasars. The DR1 not only includes spectra, but also three stellar catalogs with measured parameters: late A,FGK-type stars with high quality spectra(1 061 918 entries), A-type stars(100 073 entries), and M-type stars(121 522 entries). This paper introduces the survey design, the observational and instrumental limitations, data reduction and analysis, and some caveats. A description of the FITS structure of spectral files and parameter catalogs is also provided.
文摘This paper describes the data release of the LAMOST pilot survey, which includes data reduction, calibration, spectral analysis, data products and data access. The accuracy of the released data and the information about the FITS headers of spectra are also introduced. The released data set includes 319 000 spectra and a catalog of these objects.
基金supported by the National Natural Science Foundation of China(61371188)the Research Fund for the Doctoral Program of Higher Education(20130131110029)+2 种基金the Open Fund of State Key Laboratory of Integrated Services Networks(ISN14-03)the China Postdoctoral Science Foundation(2014M560553)the Special Funds for Postdoctoral Innovative Projects of Shandong Province(201401013)
文摘The energy efficiency(EE) for the full-duplex massive multi-input multi-output(MIMO) system is investigated. Given the transmit powers of both the uplink and the downlink, the closed-form solutions of the optimal number of antennas and the maximum EE are achieved in the high regime of the signal-to-noise ratio(SNR). It is shown that the optimal number of antennas and the maximum EE gets larger with the increase in user numbers. To further improve the EE, an optimization algorithm with low complexity is proposed to jointly determine the number of antennas and the transmit powers of both the uplink and the downlink. It is shown that, the proposed algorithm can achieve the system performance very close to the exhaustive search.
基金The work was supported in part by the National Natural Science Foundation of China(No.62271295,U22A2003,62201329)Shandong Provincial Natural Science Foundation(ZR2020QF002,ZR2022QF002).
文摘Vehicular Edge Computing(VEC)is a promising technique to accommodate the computation-intensive and delaysensitive tasks through offloading the tasks to the RoadSide-Unit(RSU)equipped with edge computing servers or neighboring vehicles.Nevertheless,the limited computation resources of edge computing servers and the mobility of vehicles make the offloading policy design very challenging.In this context,through considering the potential transmission gains brought by the mobility of vehicles,we propose an efficient computation offloading and resource allocation scheme in VEC networks with two kinds of offloading modes,i.e.,Vehicle to Vehicle(V2V)and Vehicle to RSU(V2R).We define a new cost function for vehicular users by incorporating the vehicles’offloading delay,energy consumption,and expenses with a differentiated pricing strategy,as well as the transmission gain.An optimization problem is formulated to minimize the average cost of all the task vehicles under the latency and computation capacity constraints.A distributed iterative algorithm is proposed by decoupling the problem into two subproblems for the offloading mode selection and the resource allocation.Matching theorybased and Lagrangian-based algorithms are proposed to solve the two subproblems,respectively.Simulation results show the proposed algorithm achieves low complexity and significantly improves the system performance compared with three benchmark schemes.
基金supported by the Maintenance and renovation project of Major Science and Technology foundational facility of the Chinese Academy of Sciences,DSS-WXGZ-2020-0009 and DSS-WXGZ-2021-0004the support of the National Key R&D Program of China(2019YFA0405000)+3 种基金NFSC 12090041,U1931207,U2031207 and U1931126the support of the National Natural Science for Youth Foundation of China(No.11603043)Guo Shou Jing Telescope(the Large sky Area Multi-Object fiber Spectroscopic Telescope,LAMOST)is a National Major Scientific Project built by the Chinese Academy of Sciences.Funding for the project has been provided by the National Development and Reform CommissionLAMOST is operated and managed by the National Astronomical Observatories,Chinese Academy of Sciences。
文摘The double revolving fiber positioning technology is one of the key technologies for the success of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST).The accuracy of fiber positioning will directly affect the observation efficiency of LAMOST.To achieve higher fiber positioning accuracy,the original open-loop controlled fiber positioning system urgently needs to be upgraded into a closed-loop control system.The fiber detection is the most important part of the closed-loop controlled fiber positioning system.The back-illuminated detection method is usually used to detect the fiber position by directly detecting the light spot generated at the fiber end in the multi-fiber spectral surveys.In this paper,we introduce a new method to measure the fiber position based on the image of the front-illuminated LAMOST focal plane.The front-illuminated image does not require lighting devices inside the spectrograph,and it could reduce the instability and light pollution in the spectrograph end.Our method measures the fiber position by fitting the profile of the fiber pinhole with a 2D Gaussian function.A series of tests show that the relative position measurement precision of the front-illuminated method is about 012,and the method could have the same accuracy as the back-illuminated method once the system bias is calibrated by a simple radial correction function.The required fiber positioning accuracy of LAMOST is 04,and the new method satisfies the requirement of LAMOST fiber detection accuracy and could be used in the closed-loop fiber control system.
基金supported by the National Natural Science Foundation of China(No.52375520)Hunan Provincial Natural Science Foundation Regional Joint Fund(2023JJ50037).
文摘This paper concentrates on the secure consensus problem of networked mechanical/Euler–Lagrange systems.First,a new periodic event-triggered(PET)secure distributed observer is proposed to estimate the leader information.The proposed distributed observer only relies on the PET data from its neighbors,which can significantly reduce the communication and computational burden.More importantly,it is secure in the sense that it can work normally regardless of the Denial-of-Service(DoS)attacks.Second,based on the proposed distributed observer,an adaptive fuzzy control law is proposed for each Euler–Lagrange system.A PET mechanism is integrated into the controller,which can reduce the control update.This is helpful for both energy saving and fault tolerance of actuators.Moreover,the PET mechanism naturally makes the controller easy to be implemented in digital platform.The property of fuzzy logic systems and Gronwall inequality are skillfully utilized to show the stability of the closed-loop system.Finally,the proposed control scheme is verified on real Euler–Lagrange systems,which contain a robot manipulator and several servo motors.
基金This work was supported by the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan).
文摘In recent years,cooperative coverage control of multi-agent system(MAS)has attracted plenty of researchers in various fields[1,2].Different from multi-agent consensus or synchronization,multi-agent coverage control cares about how to coordinate a team of agents for effectively monitoring or covering a given terrain,which inevitably gives rise to the interaction between individual dynamics and external environments.Nevertheless,environmental uncertainties that include static uncertainties and dynamic uncertainties and limited sensing capabilities of a single agent make it a great challenge to design control algorithms of MAS for achieving the desired coverage performance.
基金sponsored by the National Science Foundation of China(No.51908446,No.52278128).
文摘In industrial buildings,the presence of overhead cranes severely affects roof exhaust ventilation systems when capturing and discharging fumes,resulting in severe deterioration of the indoor plant environment.In this study,an overhead crane-based ventilation auxiliary device,called overhead crane fume-collecting hood(CFCH),is proposed to guide pollutants blocked by the overhead crane back to the roof exhaust hood.The airflow characteristics and pollutant distribution under the three modes of no overhead crane,overhead crane,and overhead crane+CFCH were compared using numerical simulations.Subsequently,the effects of the CFCH length(a),width(b),and height(h)on the pollutant capture performance were determined through orthogonal experiments and computational fluid dynamics.Finally,the pollutant capture efficiency(PCE)of the optimal CFCH was investigated considering different exhaust airflow rates.The results showed that the pollutants captured by the CFCH can be classified into directly and secondary captured pollutants,with the directly captured pollutants dominating.In addition,with the introduction of different sizes of CFCH around the overhead crane girders,the PCE significantly improved by 49.9%–74.6%.The length,width,and height of the CFCH on the PCE were statistically significant,and the priority of the three factors was as follows:h>b>a.The PCE decreased with increasing a,initially increased and then decreased with increasing b,and increased with h.Subsequently,when the optimal CFCH was used,the excessive exhaust air rate had no evident PCE improvement.This provides a new concept for the control of pollutants in industrial buildings and provides a theoretical basis for the design of CFCHs.