Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in ...Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in cells by participating in energy supply,biofilm formation,and signal transduction processes,and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors.More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning,progress,and treatment resistance.The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism.Therefore,we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer,and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer,as well as its significance in exploring potential therapeutic targets and biomarkers.展开更多
High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)M...High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.展开更多
Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years...Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years,the need for improved accuracy and reliability in measurement has driven the increasing adoption of in situ characterization techniques.These techniques,such as reflection high-energy electron diffraction,scanning tunneling microscopy,and X-ray photoelectron spectroscopy,allow direct observation of film growth processes in real time without exposing the sample to air,hence offering insights into the growth mechanisms of epitaxial films with controlled properties.By combining multiple in situ characterization techniques with MBE,researchers can better understand film growth processes,realizing novel materials with customized properties and extensive applications.This review aims to overview the benefits and achievements of in situ characterization techniques in MBE and their applications for material science research.In addition,through further analysis of these techniques regarding their challenges and potential solutions,particularly highlighting the assistance of machine learning to correlate in situ characterization with other material information,we hope to provide a guideline for future efforts in the development of novel monitoring and control schemes for MBE growth processes with improved material properties.展开更多
The rapid development of organic electrochemical transistors(OECTs)has ushered in a new era in organic electronics,distinguishing itself through its application in a variety of domains,from high-speed logic circuits t...The rapid development of organic electrochemical transistors(OECTs)has ushered in a new era in organic electronics,distinguishing itself through its application in a variety of domains,from high-speed logic circuits to sensitive biosensors,and neuromorphic devices like artificial synapses and organic electrochemical random-access memories.Despite recent strides in enhancing OECT performance,driven by the demand for superior transient response capabilities,a comprehensive understanding of the complex interplay between charge and ion transport,alongside electron–ion interactions,as well as the optimization strategies,remains elusive.This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses,emphasizing advancements in device physics and optimization approaches.We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications,as well as the impact of materials,morphology,device structure strategies on optimizing transient responses.This paper not only offers a detailed overview of the current state of the art,but also identifies promising avenues for future research,aiming to drive future performance advancements in diversified applications.展开更多
Ge/SiGe heterostructure quantum wells play a pivotal role in the pursuit of scalable silicon-based qubits.The varying compressive strains within these quantum wells profoundly influence the physical characteristics of...Ge/SiGe heterostructure quantum wells play a pivotal role in the pursuit of scalable silicon-based qubits.The varying compressive strains within these quantum wells profoundly influence the physical characteristics of the qubits,yet this factor remains largely unexplored,driving our research endeavor.In this study,we utilized RP-CVD(Reduced Pressure Chemical Vapor Deposition)to grow Ge quantum wells with varied compressive strain,proposing growth schemes for lightly-strained(ε∥=-0.43%)QW(quantum well),standard-strained(ε∥=-0.61%)QW,and heavily-strained(ε∥=-1.19%)QW.Through comprehen-sive material characterization,particularly employing the low-temperature magneto-transport measurements,we derived the percolation densities ranging from 4.7×10^(10) to 14.2×10^(10) cm^(-2) and mobilities from 3.382×10^(5) to 7.301×10^(5) cm^(2)∙V^(-1)∙s^(-1).Combined with the first-principles calculations,our analysis delves into the trends in effective mass and percolation density at low temperatures,shedding light on the impact of quantum effects on band structures and the interplay between structural components and wave functions.This research offers a comprehensive investigation into the intrinsic mechanisms governing complex multi-strained quantum wells,spanning growth,characterization,and computational perspectives,thereby establish-ing a strategy for the growth of high-quality strained quantum wells.展开更多
Bacterial species of the genus Lysobacter are environmentally ubiquitous with strong antifungal biocontrol potential.Heat-stable antifungal factor(HSAF)secreted by the biocontrol bacterium Lysobacter enzymogenes OH11 ...Bacterial species of the genus Lysobacter are environmentally ubiquitous with strong antifungal biocontrol potential.Heat-stable antifungal factor(HSAF)secreted by the biocontrol bacterium Lysobacter enzymogenes OH11 has broad-spectrum and highly efficient antifungal activity.Studying the biosynthetic regulations of HSAF would lay an important foundation for strain engineering toward improved HSAF production.In this work,we demonstrate that Le0752,an orotidine-5´-phosphate decarboxylase enzyme(ODCase)catalyzing a pivotal step of the UMP de novo biosynthesis pathway,is vital for HSAF-mediated antimicrobial activities and growth of L.enzymogenes OH11,but not for twitching motility.This gene regulates the production of HSAF by affecting the expression of lafB,a key gene in the HSAF biosynthesis operon,through the transcription factor Clp.Interestingly,bioinformatics analysis revealed that Le0752 belongs to the Group III ODCases,whereas its homologs in the closely related genera Xanthomonas and Stenotrophomonas belong to Group I,which contains most ODCases from Gram-positive bacteria,Gram-negative bacteria and cyanobacteria.Moreover,the Group I ODCase PXO_3614 from the Xanthomonas oryzae pv.oryzae PXO99A strain complemented the Le0752 mutant in regulating HSAF-mediated antagonistic activity.Together,these results highlight the important requirement of de novo pyrimidine biosynthetic enzymes for antibiotic HSAF production in L.enzymogenes,which lays an important foundation for improving HSAF production via metabolic flow design and for dissecting the regulatory functions of bacterial ODCases.展开更多
The detrimental effect of imprint,which can cause misreading problem,has hindered the application of ferroelectric HfO_(2).In this work,we present results of a comprehensive reliability evaluation of Hf_(0.5)Zr_(0.5)O...The detrimental effect of imprint,which can cause misreading problem,has hindered the application of ferroelectric HfO_(2).In this work,we present results of a comprehensive reliability evaluation of Hf_(0.5)Zr_(0.5)O_(2)-based ferroelectric random access memory.The influence of imprint on the retention and endurance is demonstrated.Furthermore,a solution in circuity is pro-posed to effectively solve the misreading problem caused by imprint.展开更多
In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for th...In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment.展开更多
Methyl methacrylate (MMA) was successfully grafted onto cellulose nanofibers (CNFs) at room temperature in an emulsion system using a diethyl(1,10-<span style="font-family:;" "=""><sp...Methyl methacrylate (MMA) was successfully grafted onto cellulose nanofibers (CNFs) at room temperature in an emulsion system using a diethyl(1,10-<span style="font-family:;" "=""><span style="font-family:Verdana;">phenanthroline </span><i><span style="font-family:Verdana;">N</span></i><sub><span style="font-family:Verdana;">1</span></sub><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N</span></i><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;">)zinc(</span></span><span style="font-family:Verdana;">II</span><span style="font-family:Verdana;">) complex (Phen</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DEZ) with oxygen as the radical initiator. The effects of reaction temperature, initiator concentration, and monomer content on the grafting reaction were investigated. The molecular weight of the non-grafted PMMA, which was produced during graft polymerization, was more than 1 million, as determined by size exclusion chromatography. The PMMA-grafted CNFs were analyzed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy, which confirmed the grafting of PMMA on the nanofiber surface. The study presents a strategy for the grafting of high-molecular weight PMMA onto CNFs in an emulsion system</span><span style="font-family:Verdana;"> using</span><span> Phen</span><span>-</span><span><span>DEZ and</span></span><span><span> O</span><sub><span>2</span></sub><span>.</span></span>展开更多
Effect of Si and Ti on dynamic recrystallization(DRX)of Cu-15Ni-8 Sn alloy was studied using hot compression tests over deformation temperature range of 750-950℃and strain rate range of 0.001-10 s^-1.The results show...Effect of Si and Ti on dynamic recrystallization(DRX)of Cu-15Ni-8 Sn alloy was studied using hot compression tests over deformation temperature range of 750-950℃and strain rate range of 0.001-10 s^-1.The results show that the dynamic recrystallization behavior during hot deformation is significantly affected by the trace elements of Si and Ti.The addition of Si and Ti promotes the formation of Ni16Si7Ti6 particles during hot deformation,which promotes the nucleation of dynamic recrystallization by accelerating the transition from low-angle boundaries(LABs)to high-angle boundaries(HABs).Ni16Si7Ti6 particles further inhibit the growth of recrystallized grains through the pinning effect.Based on the dynamic recrystallization behavior,a processing map of the alloy is built up to obtain the optimal processing parameters.Guided by the processing map,a hot-extruded Cu-15 Ni-8Sn alloy with a fine-grained microstructure is obtained,which shows excellent elongation of 30%and ultimate tensile strength of 910 MPa.展开更多
Objective: Data on the clinical activity of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in patients with non-small-cell lung cancer (NSCLC) and uncommon EGFR mutations remain insuf...Objective: Data on the clinical activity of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in patients with non-small-cell lung cancer (NSCLC) and uncommon EGFR mutations remain insufficient. This study aimed to investigate the effect of first-line EGFR-TKIs or platinum-based chemotherapy in NSCLC patients with uncommon EGFR mutations. Methods: We retrospectively enrolled 504 patients with EGFR-mutant NSCLC. The clinical characteristics and treatment outcomes were collected and compared between patients with common and uncommon EGFR-mutant NSCLC. Results: Seventy patients (13.9%) harboring uncommon EGFR mutations were included. Thirty of these patients received EGFR-TKIs and 40 received platinum-based chemotherapy as first-line therapy. The objective response rate (ORR) and median progression-free survival (mPFS) of patients treated with TKIs in the uncommon mutation group was significantly inferior to that in the common mutation group (ORR: 23.3% vs. 51.8%, P=0.003; mPFS: 7.1 vs. 10.9 months, P〈0.001). In the uncommon group, mPFS was similar between first-line EGFR-TKIs treatment and platinum-based chemotherapy (7.1 vs. 6.1 months, P=0.893). In patients with EGFR G719X or L861Q mutations, the mPFS was longer in the first-line EGFR-TKIs treatment group than in the chemotherapy group, but the difference was not statistically significant (G719X: 8.2 vs. 5.8 months, P=0.061; L861Q: 7.6 vs. 4.1 months, P=0.872). Multivariate analyses identified adenocarcinoma (P=0.003) as the independent predictive factor for PFS in patients with uncommon EGFR mutations who were treated with first-line EGFR-TKIs. Conclusions: The current study demonstrated that the effect of first-line EGFR-TKIs was similar to that of platinum-based chemotherapy in patients with uncommon EGFR-mutant NSCLC. Adenocarcinoma was the independent predictive factor for PFS in uncommon EGFR-mutant NSCLC patients treated with first-line EGFR- TKIs.展开更多
Objective: To study the effect of bacterial infection, use of antibiotics, active bleeding at endoscopy, and the severity of liver disease as prognostic factors in hepatic cirrhotic patients during the first 5 days af...Objective: To study the effect of bacterial infection, use of antibiotics, active bleeding at endoscopy, and the severity of liver disease as prognostic factors in hepatic cirrhotic patients during the first 5 days after the episode of esophageal or gastric variceal hemor- rhage. Methods: Seventy-six hepatic cirrhosis patients with esophageal or gastric variceal bleeding were enrolled. Bleeding was managed in a standardized protocol u- sing octreotide and vasopressin in sclerotherapy or band ligation for active bleeding at endoscopy. The screening protocol for bacterial infection consisted of chest radiograph; blood, urine and ascitic fluid cul- tures; the severity of liver disease shown by Child- Pugh score. Results: Active bleeding was observed at endoscopy in 40 patients (53%). Failure to control bleeding Within 5 days occurred in 36 patients (45%). Empir- ical antibiotic treatment was used in 53 patients (67%), whereas bacterial infections were documen- ted in 43 patients (57%). Multivariate analysis showed that proven bacterial infection (P<0.01) or antibiotic use (P<0.05) as well as active bleeding at endoscopy (P<0.01) and Child-Pugh score (P< 0.01) were independent prognostic factors of failure to control bleeding. Conclusion: Bacterial infection is associated with fai- lure to control esophageal or gastric variceal bleeding in hepatic cirrhotic patients.展开更多
The incidence of frailty gradually increases with age.This condition places a heavy burden on modern society,of which the aging population is increasing.Frailty is one of the most complicated clinical syndromes;thus,i...The incidence of frailty gradually increases with age.This condition places a heavy burden on modern society,of which the aging population is increasing.Frailty is one of the most complicated clinical syndromes;thus,it is difficult to uncover its underlying mechanisms.Oxidative stress(OS)is involved in frailty in multiple ways.The association between the gut microbiota(GM)and frailty was recently reported.Herein,we propose that OS is involved in the association between the GM and the occurrence of frailty syndrome.An imbalance between oxidation and antioxidants can eventually lead to frailty,and the GM probably participates in this process through the production of reactive oxygen species.On the other hand,OS can disturb the GM.Such dysbiosis consequently induces or exacerbates tissue damage,leading to the occurrence of frailty syndrome.Finally,we discuss the possibility of improving frailty by intervening in the vicious cycle between the imbalance of OS and dysbiosis.展开更多
The utilization of solar energy to drive energy conversion and simultaneously realize pollutant degradation via pho-tocatalysis is one of most promising strategies to resolve the global energy and environment issues.D...The utilization of solar energy to drive energy conversion and simultaneously realize pollutant degradation via pho-tocatalysis is one of most promising strategies to resolve the global energy and environment issues.During the past decade,graphite carbon nitride(g-C3N4)has attracted dramatically growing attention for solar energy conversion due to its excellent physicochemical properties as a photocatalyst.However,its practical application is still impeded by several limitations and short-comings,such as high recombination rate of charge carriers,low visible-light absorption,etc.As an effective solution,the elec-tronic structure tuning of g-C_(3)N_(4)has been widely adopted.In this context,firstly,the paper critically focuses on the different strategies of electronic structure tuning of g-C_(3)N_(4)like vacancy modification,doping,crystallinity modulation and synthesis of a new molecular structure.And the recent progress is reviewed.Finally,the challenges and future trends are summarized.展开更多
Optoelectronic devices on silicon substrates are essential not only to the optoelectronic integrated circuit but also to low-cost lasers,large-area detectors,and so forth.Although heterogeneous integration of III-V se...Optoelectronic devices on silicon substrates are essential not only to the optoelectronic integrated circuit but also to low-cost lasers,large-area detectors,and so forth.Although heterogeneous integration of III-V semiconductors on Si has been welldeveloped,the thermal dissipation issue and the complicated fabrication process still hinders the development of these devices.The monolithic growth of III-V materials on Si has also been demonstrated by applying complicated buffer layers or interlayers.On the other hand,the growth of lattice-matched B-doped group-III-V materials is an attractive area of research.However,due to the difficulty in growth,the development is still relatively slow.Herein,we present a comprehensive review of the recent achievements in this field.We summarize and discuss the conditions and mechanisms involved in growing B-doped group-III-V materials.The unique surface morphology,crystallinity,and optical properties of the epitaxy correlating with their growth conditions are discussed,along with their respective optoelectronic applications.Finally,we detail the obstacles and challenges to exploit the potential for such practical applications fully.展开更多
Solar water splitting is a promising strategy for the sustainable production of renewable hydrogen and solving the world’s crisis of energy and environment.The third-generation direct bandgap semiconductor of zinc ox...Solar water splitting is a promising strategy for the sustainable production of renewable hydrogen and solving the world’s crisis of energy and environment.The third-generation direct bandgap semiconductor of zinc oxide(ZnO)with properties of environmental friendliness and high efficiency for various photocatalytic reactions,is a suitable material for photoanodes because of its appropriate band structure,fine surface structure,and high electron mobility.However,practical applications of ZnO are usually limited by its high recombination rate of photogenerated electron–hole pairs,lack of surface reaction force,inadequate visible light response,and intrinsic photocorrosion.Given the lack of review on ZnO’s application in photoelectrochemical(PEC)water splitting,this paper reviews ZnO’s research progress in PEC water splitting.It commences with the basic principle of PEC water splitting and the structure and properties of ZnO.Then,we explicitly describe the related strategies to solve the above problems of ZnO as a photoanode,including morphology control,doping modification,construction of heterostructure,and the piezo-photoelectric enhancement of ZnO.This review aims to comprehensively describe recent findings and developments of ZnO in PEC water splitting and to provide a useful reference for the further application and development of ZnO nanomaterials in highly efficient PEC water splitting.展开更多
Background: The Plain-backed Thrush Zoothera mollissima breeds in the Himalayas and mountains of central China. It was long considered conspecific with the Long-tailed Thrush Zoothera dixoni, until these were shown to...Background: The Plain-backed Thrush Zoothera mollissima breeds in the Himalayas and mountains of central China. It was long considered conspecific with the Long-tailed Thrush Zoothera dixoni, until these were shown to be broadly sympatric.Methods: We revise the Z. mollissima–Z. dixoni complex by integrating morphological, acoustic, genetic(two mitochondrial and two nuclear markers), ecological and distributional datasets.Results: In earlier field observations, we noted two very different song types of "Plain-backed" Thrush segregated by breeding habitat and elevation. Further integrative analyses congruently identify three groups: an alpine breeder in the Himalayas and Sichuan, China("Alpine Thrush"); a forest breeder in the eastern Himalayas and northwest Yunnan(at least), China("Himalayan Forest Thrush"); and a forest breeder in central Sichuan("Sichuan Forest Thrush"). Alpine and Himalayan Forest Thrushes are broadly sympatric, but segregated by habitat and altitude, and the same is probably true also for Alpine and Sichuan Forest Thrushes. These three groups differ markedly in morphology and songs. In addition, DNA sequence data from three non-breeding specimens from Yunnan indicate that yet another lineage exists("Yunnan Thrush"). However, we find no consistent morphological differences from Alpine Thrush, and its breeding range is unknown. Molecular phylogenetic analyses suggest that all four groups diverged at least a few million years ago, and identify Alpine Thrush and the putative "Yunnan Thrush" as sisters, and the two forest taxa as sisters. Cytochrome b divergences among the four Z. mollissima sensu lato(s.l.) clades are similar to those between any of them and Z. dixoni, and exceed that between the two congeneric outgroup species. We lectotypify the name Oreocincla rostrata Hodgson, 1845 with the Z. mollissima sensu stricto(s.s.) specimen long considered its type. No available name unambiguously pertains to the Himalayan Forest Thrush.Conclusions: The Plain-backed Thrush Z. mollissima s.l. comprises at least three species: Alpine Thrush Z. mollissima s.s., with a widespread alpine breeding distribution; Sichuan Forest Thrush Z. griseiceps, breeding in central Sichuan forests; and Himalayan Forest Thrush, breeding in the eastern Himalayas and northwest Yunnan(at least), which is described herein as a new species. "Yunnan Thrush" requires further study.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.:22176195 and 82127801)National Key R&D Program of China(Grant No.:2022YFF0705003)+5 种基金the Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression(Grant No.:ZDSYS20220606100606014)the Guangdong Province Zhu Jiang Talents Plan,China(Grant No.:2021QN02Y028)the Natural Science Foundation of Guangdong Province,China(Grant No.:2021A1515010171)the Key Program of Fundamental Research in Shenzhen,China(Grant No.:JCYJ20210324115811031)the Sustainable Development Program of Shenzhen,China(Grant No.:KCXFZ202002011008124)the National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital&Shenzhen Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Shenzhen(Grant Nos.:SZ2020ZD002 and SZ2020QN005).
文摘Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in cells by participating in energy supply,biofilm formation,and signal transduction processes,and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors.More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning,progress,and treatment resistance.The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism.Therefore,we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer,and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer,as well as its significance in exploring potential therapeutic targets and biomarkers.
基金supported by the National Natural Science Foundation of China(52162030)the Yunnan Major Scientific and Technological Projects(202202AG050003)+4 种基金the Key Research and Development Program of Yunnan Province(202103AA080019)the Scientific Research Foundation of Kunming University of Science and Technology(20220122)the Graduate Student Top Innovative Talent Program of Kunming University of Science and Technology(CA23107M139A)the Analysis and Testing Foundation of Kunming University of Science and Technology(2023T20220122)the Shenzhen Science and Technology Program(KCXST20221021111201003)。
文摘High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.
基金supported by the National Key R&D Program of China(Grant No.2021YFB2206503)National Natural Science Foundation of China(Grant No.62274159)+1 种基金CAS Project for Young Scientists in Basic Research(Grant No.YSBR-056)the“Strategic Priority Research Program”of the Chinese Academy of Sciences(Grant No.XDB43010102).
文摘Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years,the need for improved accuracy and reliability in measurement has driven the increasing adoption of in situ characterization techniques.These techniques,such as reflection high-energy electron diffraction,scanning tunneling microscopy,and X-ray photoelectron spectroscopy,allow direct observation of film growth processes in real time without exposing the sample to air,hence offering insights into the growth mechanisms of epitaxial films with controlled properties.By combining multiple in situ characterization techniques with MBE,researchers can better understand film growth processes,realizing novel materials with customized properties and extensive applications.This review aims to overview the benefits and achievements of in situ characterization techniques in MBE and their applications for material science research.In addition,through further analysis of these techniques regarding their challenges and potential solutions,particularly highlighting the assistance of machine learning to correlate in situ characterization with other material information,we hope to provide a guideline for future efforts in the development of novel monitoring and control schemes for MBE growth processes with improved material properties.
基金financial support from NSFC(21704082,21875182,22109125)Key Scientific and Technological Innovation Team Project of Shaanxi Province(2020TD-002)+2 种基金111 Project 2.0(BP2018008)National Key Research and Development Program of China(2022YFE0132400)China Postdoctoral Science Foundation(2021M702585).
文摘The rapid development of organic electrochemical transistors(OECTs)has ushered in a new era in organic electronics,distinguishing itself through its application in a variety of domains,from high-speed logic circuits to sensitive biosensors,and neuromorphic devices like artificial synapses and organic electrochemical random-access memories.Despite recent strides in enhancing OECT performance,driven by the demand for superior transient response capabilities,a comprehensive understanding of the complex interplay between charge and ion transport,alongside electron–ion interactions,as well as the optimization strategies,remains elusive.This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses,emphasizing advancements in device physics and optimization approaches.We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications,as well as the impact of materials,morphology,device structure strategies on optimizing transient responses.This paper not only offers a detailed overview of the current state of the art,but also identifies promising avenues for future research,aiming to drive future performance advancements in diversified applications.
基金supported by the Innovation Program for Quantum Science and Technology (Project ID.2021ZD0302301)the National Natural Science Foundation of China (Grant No.6240033549).
文摘Ge/SiGe heterostructure quantum wells play a pivotal role in the pursuit of scalable silicon-based qubits.The varying compressive strains within these quantum wells profoundly influence the physical characteristics of the qubits,yet this factor remains largely unexplored,driving our research endeavor.In this study,we utilized RP-CVD(Reduced Pressure Chemical Vapor Deposition)to grow Ge quantum wells with varied compressive strain,proposing growth schemes for lightly-strained(ε∥=-0.43%)QW(quantum well),standard-strained(ε∥=-0.61%)QW,and heavily-strained(ε∥=-1.19%)QW.Through comprehen-sive material characterization,particularly employing the low-temperature magneto-transport measurements,we derived the percolation densities ranging from 4.7×10^(10) to 14.2×10^(10) cm^(-2) and mobilities from 3.382×10^(5) to 7.301×10^(5) cm^(2)∙V^(-1)∙s^(-1).Combined with the first-principles calculations,our analysis delves into the trends in effective mass and percolation density at low temperatures,shedding light on the impact of quantum effects on band structures and the interplay between structural components and wave functions.This research offers a comprehensive investigation into the intrinsic mechanisms governing complex multi-strained quantum wells,spanning growth,characterization,and computational perspectives,thereby establish-ing a strategy for the growth of high-quality strained quantum wells.
基金supported by the National Natural Science Foundation of China(32102283 to Mingming Yang)the Science and Technology Major Project of China National Tobacco Corporation(110202101056(LS-16))the Science and Technology Project of Shaanxi Branch of China National Tobacco Corporation(KJ-2021-02 and KJ-2022-04).
文摘Bacterial species of the genus Lysobacter are environmentally ubiquitous with strong antifungal biocontrol potential.Heat-stable antifungal factor(HSAF)secreted by the biocontrol bacterium Lysobacter enzymogenes OH11 has broad-spectrum and highly efficient antifungal activity.Studying the biosynthetic regulations of HSAF would lay an important foundation for strain engineering toward improved HSAF production.In this work,we demonstrate that Le0752,an orotidine-5´-phosphate decarboxylase enzyme(ODCase)catalyzing a pivotal step of the UMP de novo biosynthesis pathway,is vital for HSAF-mediated antimicrobial activities and growth of L.enzymogenes OH11,but not for twitching motility.This gene regulates the production of HSAF by affecting the expression of lafB,a key gene in the HSAF biosynthesis operon,through the transcription factor Clp.Interestingly,bioinformatics analysis revealed that Le0752 belongs to the Group III ODCases,whereas its homologs in the closely related genera Xanthomonas and Stenotrophomonas belong to Group I,which contains most ODCases from Gram-positive bacteria,Gram-negative bacteria and cyanobacteria.Moreover,the Group I ODCase PXO_3614 from the Xanthomonas oryzae pv.oryzae PXO99A strain complemented the Le0752 mutant in regulating HSAF-mediated antagonistic activity.Together,these results highlight the important requirement of de novo pyrimidine biosynthetic enzymes for antibiotic HSAF production in L.enzymogenes,which lays an important foundation for improving HSAF production via metabolic flow design and for dissecting the regulatory functions of bacterial ODCases.
基金This research was supported by the National Key R&D Program of China(Grant No.2022YFB3606900)in part by the National Natural Science of China(Grant No.62004217).
文摘The detrimental effect of imprint,which can cause misreading problem,has hindered the application of ferroelectric HfO_(2).In this work,we present results of a comprehensive reliability evaluation of Hf_(0.5)Zr_(0.5)O_(2)-based ferroelectric random access memory.The influence of imprint on the retention and endurance is demonstrated.Furthermore,a solution in circuity is pro-posed to effectively solve the misreading problem caused by imprint.
基金funded in part by the National Key R&D Program of China(Grant No.2022YFB3606900)in part by the National Natural Science of China(Grant No.62004217)。
文摘In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment.
文摘Methyl methacrylate (MMA) was successfully grafted onto cellulose nanofibers (CNFs) at room temperature in an emulsion system using a diethyl(1,10-<span style="font-family:;" "=""><span style="font-family:Verdana;">phenanthroline </span><i><span style="font-family:Verdana;">N</span></i><sub><span style="font-family:Verdana;">1</span></sub><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N</span></i><sub><span style="font-family:Verdana;">10</span></sub><span style="font-family:Verdana;">)zinc(</span></span><span style="font-family:Verdana;">II</span><span style="font-family:Verdana;">) complex (Phen</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DEZ) with oxygen as the radical initiator. The effects of reaction temperature, initiator concentration, and monomer content on the grafting reaction were investigated. The molecular weight of the non-grafted PMMA, which was produced during graft polymerization, was more than 1 million, as determined by size exclusion chromatography. The PMMA-grafted CNFs were analyzed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy, which confirmed the grafting of PMMA on the nanofiber surface. The study presents a strategy for the grafting of high-molecular weight PMMA onto CNFs in an emulsion system</span><span style="font-family:Verdana;"> using</span><span> Phen</span><span>-</span><span><span>DEZ and</span></span><span><span> O</span><sub><span>2</span></sub><span>.</span></span>
基金Project(2015A030312003) supported by the Guangdong Natural Science Foundation for Research Team,China
文摘Effect of Si and Ti on dynamic recrystallization(DRX)of Cu-15Ni-8 Sn alloy was studied using hot compression tests over deformation temperature range of 750-950℃and strain rate range of 0.001-10 s^-1.The results show that the dynamic recrystallization behavior during hot deformation is significantly affected by the trace elements of Si and Ti.The addition of Si and Ti promotes the formation of Ni16Si7Ti6 particles during hot deformation,which promotes the nucleation of dynamic recrystallization by accelerating the transition from low-angle boundaries(LABs)to high-angle boundaries(HABs).Ni16Si7Ti6 particles further inhibit the growth of recrystallized grains through the pinning effect.Based on the dynamic recrystallization behavior,a processing map of the alloy is built up to obtain the optimal processing parameters.Guided by the processing map,a hot-extruded Cu-15 Ni-8Sn alloy with a fine-grained microstructure is obtained,which shows excellent elongation of 30%and ultimate tensile strength of 910 MPa.
基金supported in part by grants from the National Natural Science Foundation of China(No.81372392 and 81402486)
文摘Objective: Data on the clinical activity of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in patients with non-small-cell lung cancer (NSCLC) and uncommon EGFR mutations remain insufficient. This study aimed to investigate the effect of first-line EGFR-TKIs or platinum-based chemotherapy in NSCLC patients with uncommon EGFR mutations. Methods: We retrospectively enrolled 504 patients with EGFR-mutant NSCLC. The clinical characteristics and treatment outcomes were collected and compared between patients with common and uncommon EGFR-mutant NSCLC. Results: Seventy patients (13.9%) harboring uncommon EGFR mutations were included. Thirty of these patients received EGFR-TKIs and 40 received platinum-based chemotherapy as first-line therapy. The objective response rate (ORR) and median progression-free survival (mPFS) of patients treated with TKIs in the uncommon mutation group was significantly inferior to that in the common mutation group (ORR: 23.3% vs. 51.8%, P=0.003; mPFS: 7.1 vs. 10.9 months, P〈0.001). In the uncommon group, mPFS was similar between first-line EGFR-TKIs treatment and platinum-based chemotherapy (7.1 vs. 6.1 months, P=0.893). In patients with EGFR G719X or L861Q mutations, the mPFS was longer in the first-line EGFR-TKIs treatment group than in the chemotherapy group, but the difference was not statistically significant (G719X: 8.2 vs. 5.8 months, P=0.061; L861Q: 7.6 vs. 4.1 months, P=0.872). Multivariate analyses identified adenocarcinoma (P=0.003) as the independent predictive factor for PFS in patients with uncommon EGFR mutations who were treated with first-line EGFR-TKIs. Conclusions: The current study demonstrated that the effect of first-line EGFR-TKIs was similar to that of platinum-based chemotherapy in patients with uncommon EGFR-mutant NSCLC. Adenocarcinoma was the independent predictive factor for PFS in uncommon EGFR-mutant NSCLC patients treated with first-line EGFR- TKIs.
文摘Objective: To study the effect of bacterial infection, use of antibiotics, active bleeding at endoscopy, and the severity of liver disease as prognostic factors in hepatic cirrhotic patients during the first 5 days after the episode of esophageal or gastric variceal hemor- rhage. Methods: Seventy-six hepatic cirrhosis patients with esophageal or gastric variceal bleeding were enrolled. Bleeding was managed in a standardized protocol u- sing octreotide and vasopressin in sclerotherapy or band ligation for active bleeding at endoscopy. The screening protocol for bacterial infection consisted of chest radiograph; blood, urine and ascitic fluid cul- tures; the severity of liver disease shown by Child- Pugh score. Results: Active bleeding was observed at endoscopy in 40 patients (53%). Failure to control bleeding Within 5 days occurred in 36 patients (45%). Empir- ical antibiotic treatment was used in 53 patients (67%), whereas bacterial infections were documen- ted in 43 patients (57%). Multivariate analysis showed that proven bacterial infection (P<0.01) or antibiotic use (P<0.05) as well as active bleeding at endoscopy (P<0.01) and Child-Pugh score (P< 0.01) were independent prognostic factors of failure to control bleeding. Conclusion: Bacterial infection is associated with fai- lure to control esophageal or gastric variceal bleeding in hepatic cirrhotic patients.
基金the National Key Research and Development Program of China,No.2018YFC2002000 and 2018YFC2000500/03Shanghai Natural Science Foundation,No.21ZR1409200
文摘The incidence of frailty gradually increases with age.This condition places a heavy burden on modern society,of which the aging population is increasing.Frailty is one of the most complicated clinical syndromes;thus,it is difficult to uncover its underlying mechanisms.Oxidative stress(OS)is involved in frailty in multiple ways.The association between the gut microbiota(GM)and frailty was recently reported.Herein,we propose that OS is involved in the association between the GM and the occurrence of frailty syndrome.An imbalance between oxidation and antioxidants can eventually lead to frailty,and the GM probably participates in this process through the production of reactive oxygen species.On the other hand,OS can disturb the GM.Such dysbiosis consequently induces or exacerbates tissue damage,leading to the occurrence of frailty syndrome.Finally,we discuss the possibility of improving frailty by intervening in the vicious cycle between the imbalance of OS and dysbiosis.
基金mostly supported by the National Natural Science Foundation of China(Nos.21975245,51972300,61674141,12004094,and 21976049)the Key Research Program of Frontier Science,CAS(QYZDB-SSW-SLH006)+7 种基金the National Key Research and Development Program of China(Nos.2017YFA0206600 and 2018YFE0204000)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB43000000)the Natural Science Foundation of Hebei Province(F2019402063)the Youth Foundation of Hebei Province Department of Education(QN2019326)the Science and Technology Research and Development Program of Handan city(21422111246)the Key Project of Handan University(2018101)the support from the Youth Innovation Promotion Association,Chinese Academy of Sciences(2020114)the support from the Doctoral Special Fund Project of Hebei University of Engineering。
文摘The utilization of solar energy to drive energy conversion and simultaneously realize pollutant degradation via pho-tocatalysis is one of most promising strategies to resolve the global energy and environment issues.During the past decade,graphite carbon nitride(g-C3N4)has attracted dramatically growing attention for solar energy conversion due to its excellent physicochemical properties as a photocatalyst.However,its practical application is still impeded by several limitations and short-comings,such as high recombination rate of charge carriers,low visible-light absorption,etc.As an effective solution,the elec-tronic structure tuning of g-C_(3)N_(4)has been widely adopted.In this context,firstly,the paper critically focuses on the different strategies of electronic structure tuning of g-C_(3)N_(4)like vacancy modification,doping,crystallinity modulation and synthesis of a new molecular structure.And the recent progress is reviewed.Finally,the challenges and future trends are summarized.
文摘Optoelectronic devices on silicon substrates are essential not only to the optoelectronic integrated circuit but also to low-cost lasers,large-area detectors,and so forth.Although heterogeneous integration of III-V semiconductors on Si has been welldeveloped,the thermal dissipation issue and the complicated fabrication process still hinders the development of these devices.The monolithic growth of III-V materials on Si has also been demonstrated by applying complicated buffer layers or interlayers.On the other hand,the growth of lattice-matched B-doped group-III-V materials is an attractive area of research.However,due to the difficulty in growth,the development is still relatively slow.Herein,we present a comprehensive review of the recent achievements in this field.We summarize and discuss the conditions and mechanisms involved in growing B-doped group-III-V materials.The unique surface morphology,crystallinity,and optical properties of the epitaxy correlating with their growth conditions are discussed,along with their respective optoelectronic applications.Finally,we detail the obstacles and challenges to exploit the potential for such practical applications fully.
基金the National Natural Science Foundation of China(Grant No.21975245,51972300 and 61674141)the Key Research Program of Frontier Science,CAS(Grant No.QYZDB-SSW-SLH006)+1 种基金the National Key Research and Development Program of China(Grant No.2017YFA0206600,2018YFE0204000)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43000000),K.L.also acknowledges the support from the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2020114).
文摘Solar water splitting is a promising strategy for the sustainable production of renewable hydrogen and solving the world’s crisis of energy and environment.The third-generation direct bandgap semiconductor of zinc oxide(ZnO)with properties of environmental friendliness and high efficiency for various photocatalytic reactions,is a suitable material for photoanodes because of its appropriate band structure,fine surface structure,and high electron mobility.However,practical applications of ZnO are usually limited by its high recombination rate of photogenerated electron–hole pairs,lack of surface reaction force,inadequate visible light response,and intrinsic photocorrosion.Given the lack of review on ZnO’s application in photoelectrochemical(PEC)water splitting,this paper reviews ZnO’s research progress in PEC water splitting.It commences with the basic principle of PEC water splitting and the structure and properties of ZnO.Then,we explicitly describe the related strategies to solve the above problems of ZnO as a photoanode,including morphology control,doping modification,construction of heterostructure,and the piezo-photoelectric enhancement of ZnO.This review aims to comprehensively describe recent findings and developments of ZnO in PEC water splitting and to provide a useful reference for the further application and development of ZnO nanomaterials in highly efficient PEC water splitting.
基金financial support from the Ministry of Science and Technology of China(Grant No.2014FY210200,to.T.C.and Y.G.)the Russian Science Foundation(Project No.14-50-00029,to M.K.)+3 种基金the Delia Koo Global Faculty Endowment of the Asian Studies Center,Michigan State University(to P.C.R.)The Sound Approach and Jornvall Foundation(both to P.A.and U.O.)the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists(No.2011T2S04,to P.A.)Swarovski Optik Greater China(to P.A.)
文摘Background: The Plain-backed Thrush Zoothera mollissima breeds in the Himalayas and mountains of central China. It was long considered conspecific with the Long-tailed Thrush Zoothera dixoni, until these were shown to be broadly sympatric.Methods: We revise the Z. mollissima–Z. dixoni complex by integrating morphological, acoustic, genetic(two mitochondrial and two nuclear markers), ecological and distributional datasets.Results: In earlier field observations, we noted two very different song types of "Plain-backed" Thrush segregated by breeding habitat and elevation. Further integrative analyses congruently identify three groups: an alpine breeder in the Himalayas and Sichuan, China("Alpine Thrush"); a forest breeder in the eastern Himalayas and northwest Yunnan(at least), China("Himalayan Forest Thrush"); and a forest breeder in central Sichuan("Sichuan Forest Thrush"). Alpine and Himalayan Forest Thrushes are broadly sympatric, but segregated by habitat and altitude, and the same is probably true also for Alpine and Sichuan Forest Thrushes. These three groups differ markedly in morphology and songs. In addition, DNA sequence data from three non-breeding specimens from Yunnan indicate that yet another lineage exists("Yunnan Thrush"). However, we find no consistent morphological differences from Alpine Thrush, and its breeding range is unknown. Molecular phylogenetic analyses suggest that all four groups diverged at least a few million years ago, and identify Alpine Thrush and the putative "Yunnan Thrush" as sisters, and the two forest taxa as sisters. Cytochrome b divergences among the four Z. mollissima sensu lato(s.l.) clades are similar to those between any of them and Z. dixoni, and exceed that between the two congeneric outgroup species. We lectotypify the name Oreocincla rostrata Hodgson, 1845 with the Z. mollissima sensu stricto(s.s.) specimen long considered its type. No available name unambiguously pertains to the Himalayan Forest Thrush.Conclusions: The Plain-backed Thrush Z. mollissima s.l. comprises at least three species: Alpine Thrush Z. mollissima s.s., with a widespread alpine breeding distribution; Sichuan Forest Thrush Z. griseiceps, breeding in central Sichuan forests; and Himalayan Forest Thrush, breeding in the eastern Himalayas and northwest Yunnan(at least), which is described herein as a new species. "Yunnan Thrush" requires further study.