期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Exploring an eco-friendly approach to improve soil tensile behavior and cracking resistance 被引量:1
1
作者 Lin Li chao-sheng tang +5 位作者 Jin-Jian Xu Yao Wei Zhi-Hao Dong Bo Liu Xi-Ying Zhang Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4272-4284,共13页
Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey so... Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey soils.To validate the feasibility and efficacy of the proposed approach,direct tensile tests were employed to determine the tensile strength of the compacted soil with different W-OH treatment concentrations and water contents.Desiccation tests were also performed to evaluate the effectiveness of W-OH treatment in enhancing soil tensile cracking resistance.During this period,the effects of W-OH treatment concentration and water content on tensile properties,soil suction and microstructure were investigated.The tensile tests reveal that W-OH treatment has a significant impact on the tensile strength and failure mode of the soil,which not only effectively enhances the tensile strength and failure displacement,but also changes the brittle failure behavior into a more ductile quasi-brittle failure behavior.The suction measurements and mercury intrusion porosimetry(MIP)tests show that W-OH treatment can slightly reduce soil suction by affecting skeleton structure and increasing macropores.Combined with the microstructural analysis,it becomes evident that the significant improvement in soil tensile behavior through W-OH treatment is mainly attributed to the W-OH gel's ability to provide additional binding force for bridging and encapsulating the soil particles.Moreover,desiccation tests demonstrate that W-OH treatment can significantly reduce or even inhibit the formation of soil tensile cracking.With the increase of W-OH treatment concentration,the surface crack ratio and total crack length are significantly reduced.This study enhances a fundamental understanding of eco-polymer impacts on soil mechanical properties and provides valuable insight into their potential application for improving soil crack resistance. 展开更多
关键词 Clayey soil Tensile strength Eco-friendly approach Direct tensile test Desiccation cracking Crack resistance
下载PDF
Investigation on microstructure evolution of clayey soils: A review focusing on wetting/drying process 被引量:3
2
作者 chao-sheng tang Qing Cheng +2 位作者 Xuepeng Gong Bin Shi Hilary I.Inyang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期269-284,共16页
Variability in moisture content is a common condition in natural soils.It influences soil properties significantly.A comprehensive understanding of the evolution of soil microstructure in wetting/drying process is of ... Variability in moisture content is a common condition in natural soils.It influences soil properties significantly.A comprehensive understanding of the evolution of soil microstructure in wetting/drying process is of great significance for interpretation of soil macro hydro-mechanical behavior.In this review paper,methods that are commonly used to study soil microstructure are summarized.Among them are scanning electron microscope(SEM),environmental SEM(ESEM),mercury intrusion porosimetry(MIP)and computed tomography(CT)technology.Moreover,progress in research on the soil microstructure evolution during drying,wetting and wetting/drying cycles is summarized based on reviews of a large body of research papers published in the past several decades.Soils compacted on the wet side of op-timum water content generally have a matrix-type structure with a monomodal pore size distribution(PSD),whereas soils compacted on the dry side of optimum water content display an aggregate structure that exhibits bimodal PSD.During drying,decrease in soil volume is mainly caused by the shrinkage of inter-aggregate pores.During wetting,both the intra-and inter-aggregate pores increase gradually in number and sizes.Changes in the characteristics of the soil pore structure significantly depend on stress state as the soil is subjected to wetting.During wetting/drying cycles,soil structural change is not completely reversible,and the generated cumulative swelling/shrinkage deformation mainly derives from macro-pores.Furthermore,based on this analysis and identified research needs,some important areas of research focus are proposed for future work.These areas include innovative methods of sample preparation,new observation techniques,fast quantitative analysis of soil structure,integration of microstructural parameters into macro-mechanical models,and soil microstructure evolution charac-teristics under multi-field coupled conditions. 展开更多
关键词 Soil microstructure Pore size distribution(PSD) Wetting/drying cycle SUCTION Volume change
下载PDF
Soil micro-penetration resistance as an index of its infiltration processes during rainfall 被引量:2
3
作者 chao-sheng tang Xue-Peng Gong +4 位作者 Zhengtao Shen Qing Cheng Hilary Inyang Chao Lv Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1580-1587,共8页
Rainfall infiltration is one of the most important driving factors of geological hazards, ecological environment problems, and engineering accidents. Understanding the principle of soil wetting during rainfall infiltr... Rainfall infiltration is one of the most important driving factors of geological hazards, ecological environment problems, and engineering accidents. Understanding the principle of soil wetting during rainfall infiltration and its influence on soil mechanical properties is crucial for preventing geological hazards. In this study, micro-penetration tests coupled with moisture monitoring were performed to investigate the infiltration process during wetting through the measured change in mechanical characteristics. Results show that penetration resistance increases in the deep layer gradually. With increasing infiltration time,the wetting front keeps moving downward, and its range becomes wider. A slight increase of the penetration resistance in the shallow layer(d ≤ 17.5 mm) is observed. However, the penetration resistance in the middle layer(22.5 mm ≤ d ≤ 32.5 mm) decreases firstly before a slight increase. In the deep layer(d ≥ 37.5 mm), the penetration resistance decreases continuously during infiltration. Based on the measured water content profile during infiltration, it is found that the evolution of soil mechanical characteristics is fully responsible by the infiltration-induced re-distribution of water content along depth. Generally, the penetration resistance decreases exponentially with increasing water content in the soil. When the water content is low, wetting can weaken soil strength significantly, whereas this effect diminishes when the moisture surpasses a certain threshold. The results highlight that the penetration curves and water content profile show close inter-dependency and consistency, which verifies the feasibility of using micro-penetration to investigate rainfall infiltration and wetting process in surface soil layer or laboratory small-scale soil samples. This method enables fast, versatile and high-resolution measurements of infiltration process and moisture distribution in soil. 展开更多
关键词 Micro-penetration test Soil wetting Rainfall infiltration Water content Hydro-mechanical behavior Microstructure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部