期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The 2023 Turkey earthquake doublet: Earthquake relocation, seismic tomography, and stress field inversion
1
作者 HuiLi Zhan Ling Bai +3 位作者 Bagus Adi Wibowo chaoya liu Kazuo Oike Yuzo Ishikawa 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期535-548,共14页
On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault ... On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault Zone,a convergent boundary between the Arabian Plate and the Anatolian Subplate.In this study,we analyze the M_(W) 7.8 and M_(W) 7.5 earthquakes by comparing their aftershock relocations,tomographic images,and stress field inversions.The earthquakes were localized in the upper crust and exhibited steep dip angles.Furthermore,the aftershocks occurred either close to the boundaries of low and high P-wave velocity anomaly zones or within the low P-wave velocity anomaly zones.The East Anatolia Fault,associated with the M_(W) 7.8 earthquake,and the SürgüFault,related to the M_(W) 7.5 earthquake,predominantly experienced shear stress.However,their western sections experienced a combination of strike-slip and tensile stresses in addition to shear stress.The ruptures of the M_(W) 7.8 and M_(W) 7.5 earthquakes appear to have bridged a seismic gap that had seen sparse seismicity over the past 200 years prior to the 2023 Turkey earthquake sequence. 展开更多
关键词 Turkey earthquake doublet earthquake relocation seismic tomography stress field SEISMICITY
下载PDF
Coseismic deformation of the 2021 M_(W)7.4 Maduo earthquake from joint inversion of InSAR, GPS, and teleseismic data 被引量:2
2
作者 chaoya liu Ling Bai +5 位作者 Shunying Hong Yanfang Dong Yong Jiang Hongru Li Huili Zhan Zhiwen Chen 《Earthquake Science》 2021年第5期436-446,共11页
The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_... The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_(S)>7.0 have occurred in the past 25 years.Here,we combined interferometric synthetic aperture radar,GPS,and teleseismic data to study the coseismic slip distribution,fault geometry,and dynamic source rupture process of the Maduo earthquake.We found that the overall coseismic deformation field of the Maduo earthquake is distributed in the NWW-SEE direction along 285°.There was slight bending at the western end and two branches at the eastern end.The maximum slip is located near the eastern bending area on the northern branch of the fault system.The rupture nucleated on the Jiangcuo fault and propagated approximately 160 km along-strike in both the NWW and SEE directions.The characteristic source rupture process of the Maduo earthquake is similar to that of the 2010 M_(W)6.8 Yushu earthquake,indicating that similar earthquakes with large-expansion surface ruptures and small shallow slip deficits can occur on both the internal fault and boundary fault of the Bayan Har block. 展开更多
关键词 Maduo earthquake joint inversion coseismic de-formation fault geometry rupture process.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部