期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Mechanical anisotropy associated with beddings in shale under Brazilian test conditions:Insights from acoustic emission statistics
1
作者 Yongfa Zhang Yinlin Ji +2 位作者 Yu Zhao Qinglin Deng chaolin wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4462-4479,共18页
A comprehensive understanding of shale’s bedding anisotropy is crucial for shale-related engineering activities,such as hydraulic fracturing,drilling and underground excavation.In this study,seven Brazilian tests wer... A comprehensive understanding of shale’s bedding anisotropy is crucial for shale-related engineering activities,such as hydraulic fracturing,drilling and underground excavation.In this study,seven Brazilian tests were conducted on shale samples at different bedding orientations with respect to the loading direction(0°,45°and 90°)and the disc end face(0°,45°and 90°).An acoustic emission(AE)system was employed to capture the evolution of damage and the temporal-spatial distribution of microcracks under splitting-tensile stress.The results show that the Brazilian tensile strength decreases with increasing bedding inclination with respect to the disc end face,while it increases with the angle between bedding and loading directions.Increasing the bedding inclination with respect to the end face facilitates the reduction in b value and enhances the shale’s resistance to microcrack growth during the loading process.Misalignment between the bedding orientation and the end face suppresses the growth of mixed tensile-shear microcracks,while reducing the bedding angle relative to the loading direction is beneficial for creating mixed tensile-shear and tensile cracks.The observed microscopic failure characteristics are attributed to the competing effects of bedding activation and breakage of shale matrix at different bedding inclinations.The temporal-spatial distribution of microcracks,characterized by AE statistics including the correlation dimension and spatial correlation length,illustrates that the fractal evolution of microcracks is independent of bedding anisotropy,whereas the spatial distribution shows a stronger correlation.The evolution features of correlation dimension and spatial correlation length could be potentially used as precursors for shale splitting failure.These findings may be useful for predicting rock mass instability and analyzing the causes of catastrophic rupture. 展开更多
关键词 Bedding anisotropy Acoustic emission(AE) SHALE Brazilian test Rock failure mechanism Splitting-tensile cracks
下载PDF
A modified 3D mean strain energy density criterion for predicting shale mixed-mode Ⅰ/Ⅲ fracture toughness
2
作者 Kun Zheng chaolin wang +2 位作者 Yu Zhao Jing Bi Haifeng Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2411-2428,共18页
The fracture toughness of rocks is a critical fracturing parameter in geo-energy exploitation playing a significant role in fracture mechanics and hydraulic fracturing.The edge-notched disk bending(ENDB)specimens are ... The fracture toughness of rocks is a critical fracturing parameter in geo-energy exploitation playing a significant role in fracture mechanics and hydraulic fracturing.The edge-notched disk bending(ENDB)specimens are employed to measure the entire range of mixed-modeⅠ/Ⅲfracture toughness of Longmaxi shale.To theoretically interpret the fracture mechanisms,this research first introduces the detailed derivations of three established fracture criteria.By distinguishing the volumetric and distortional strain energy densities,an improved three-dimensional mean strain energy density(MSED)criterion is proposed.As the critical volumetric to distortional MSED ratio decreases,the transition from tensiondominated fracture to shear-dominated fracture is observed.Our results indicate that both peak load and applied energy increase significantly with the transition from pure mode I(i.e.,tension)to pure modeⅢ(i.e.,torsion or tearing)since mode-Ⅲcracking happens in a twisted manner and mode-Ⅰcracking occurs in a coplanar manner.The macroscopic fracture signatures are consistent with those of triaxial hydraulic fracturing.The average ratio of pure mode-Ⅲfracture toughness to pure mode-Ⅰfracture toughness is 0.68,indicating that the obtained mode-Ⅲfracture resistance for a tensionbased loading system is apparent rather than true.Compared to the three mainstream fracture criteria,the present fracture criterion exhibits greater competitiveness and can successfully evaluate and predict mixed-modeⅠ/Ⅲfracture toughness of distinct materials and loading methods. 展开更多
关键词 Longmaxi shale Hydraulic fracturing Fracture mechanisms Fracture criteria Mixed-modeⅠ/Ⅲfracture toughness Edge-notched disk bending
下载PDF
NMR-based analysis of the effect of moisture migration on sandstone pore structure under alternating wetting and drying conditions
3
作者 Huasu wang Jing Bi +2 位作者 Yu Zhao chaolin wang Jiabao Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1135-1150,共16页
The wetting-drying(W-D)cycle is a type of water–rock interaction.The pore structure of rock,such as shape,size,distribution and pore throat,affects fluid storage and transport.Fractal theory and experimental research... The wetting-drying(W-D)cycle is a type of water–rock interaction.The pore structure of rock,such as shape,size,distribution and pore throat,affects fluid storage and transport.Fractal theory and experimental research on the evolution characteristics of pore damage during the wet-dry erosion process are highly important for determining W-D damage.The mass and velocity of liquid migration are related to the pore size,porosity,fluid properties,etc.Experimental data show that the water absorption quality and velocity in rocks decrease with the number of wet-dry cycles.At the same test time,the mass and velocity of the SI water absorption method are smaller than those of the FI method.Under these two conditions,the amount and rate of water absorption represent the degree of water–rock interaction.Considering the pore evolution during the wet-dry cycling,an equation describing the motion of liquid in porous media was derived based on the imbibition-type separation model.The experimental data are in excellent agreement with the calculated values of the model.Permeability characteristics can affect the area and degree of rock deterioration as well as the development rate of pores and microcracks.Based on the interaction between permeability and pores,quantitative analysis of the weakening process(local damage)of rocks under W-D cycles can provide good reference indicators for evaluating the stability of geotechnical engineering. 展开更多
关键词 W-D cycle Capillary absorption Pore characteristic Fractal theory Dynamic damage model
下载PDF
Mutual impact of true triaxial stress, borehole orientation and bedding inclination on laboratory hydraulic fracturing of Lushan shale 被引量:3
4
作者 Yongfa Zhang Anfa Long +2 位作者 Yu Zhao Arno Zang chaolin wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3131-3147,共17页
Unconventional resources like shale gas has been the focus of intense research and development for two decades. Apart from intrinsic geologic factors that control the gas shale productivity (e.g. organic matter conten... Unconventional resources like shale gas has been the focus of intense research and development for two decades. Apart from intrinsic geologic factors that control the gas shale productivity (e.g. organic matter content, bedding planes, natural fractures, porosity and stress regime among others), external factors like wellbore orientation and stimulation design play a role. In this study, we present a series of true triaxial hydraulic fracturing experiments conducted on Lushan shale to investigate the interplay of internal factors (bedding, natural fractures and in situ stress) and external factors (wellbore orientation) on the growth process of fracture networks in cubic specimens of 200 mm in length. We observe relatively low breakdown pressure and fracture propagation pressure as the wellbore orientation and/or the maximum in situ stress is subparallel to the shale bedding plane. The wellbore orientation has a more prominent effect on the breakdown pressure, but its effect is tapered with increasing angle of bedding inclination. The shale breakdown is followed by an abrupt response in sample displacement, which reflects the stimulated fracture volume. Based on fluid tracer analysis, the morphology of hydraulic fractures (HF) is divided into four categories. Among the categories, activation of bedding planes (bedding failure, BF) and natural fractures (NF) significantly increase bifurcation and fractured areas. Under the same stress regime, a horizontal wellbore is more favorable to enhance the complexity of hydraulic fracture networks. This is attributed to the relatively large surface area in contact with the bedding plane for the horizontal borehole compared to the case with a vertical wellbore. These findings provide important references for hydraulic fracturing design in shale reservoirs. 展开更多
关键词 True triaxial hydraulic fracturing experiment In situ stress state Bedding planes Natural fractures Wellbore orientation Shale reservoirs
下载PDF
Study on damage-stress loss coupling model of rock and prestressed anchor cable in dry-wet environment
5
作者 Yu Zhao Huasu wang +3 位作者 Jing Bi Zhijun Wu chaolin wang Jiabao Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1451-1467,共17页
The loss of anchoring force is one of the problems to be solved urgently.The anchorage loss is a key factor causing the failure of anchoring engineering,so it is crucial to study the time-dependent variation of anchor... The loss of anchoring force is one of the problems to be solved urgently.The anchorage loss is a key factor causing the failure of anchoring engineering,so it is crucial to study the time-dependent variation of anchoring force.Alternating dry and wet(D-W)conditions have a significant effect on deformation of rock.The anchoring system is composed of anchoring components and rock mass,and thus rock deformation has a significant impact on the loss of anchoring force.Quantifying rock deformation under the effects of D-W cycles is a prerequisite to understanding the factors that influence loss of anchoring force in anchor bolts.In this study,we designed an anchoring device that enabled real-time monitoring of the variation in strain during D-W periods and rock testing.Nuclear magnetic resonance(NMR)measurements showed that under D-W conditions,the increment in porosity was smaller for prestressed rock than unstressed rock.The trends of prestress loss and strain variation are consistent,which can be divided into three characteristic intervals:rapid attenuation stage,slow attenuation stage and relatively stable stage.At the same stress level,the rate of stress loss and strain for the soaking specimen was the highest,while that of the dried specimen was the lowest.In the same D-W cycling conditions,the greater the prestress,the smaller the strain loss rate of the rock,especially under soaking conditions.The characteristics of pore structure and physical mechanical parameters indicated that prestress could effectively suppress damage caused by erosion related to D-W cycles.The study reveals the fluctuation behavior of rock strain and prestress loss under D-W conditions,providing a reference for effectively controlling anchoring loss and ideas for inventing new anchoring components. 展开更多
关键词 D-W cycles Anchoring force loss Coupled model Pore structure Prestressed device
下载PDF
Nest-site Use by the Chinese Alligator (Alligator sinensis) in the Gaojingmiao Breeding Farm,Anhui,China 被引量:1
6
作者 Jianjun wang Xiaobing WU +3 位作者 Dawei TIAN Jialong ZHU Renping wang chaolin wang 《Asian Herpetological Research》 SCIE 2011年第1期36-40,共5页
Nest-site and nesting material used by the Chinese alligator (Alligator sinensis) was studied at the Gaojingmiao Breeding Farm, Langxi County, Anhui, China from May to September 2009. In this study, artificial nesti... Nest-site and nesting material used by the Chinese alligator (Alligator sinensis) was studied at the Gaojingmiao Breeding Farm, Langxi County, Anhui, China from May to September 2009. In this study, artificial nesting materials were placed in 43 potential nesting sites before the nesting season, 11 of which were used. Additionally, eight nests were built at natural sites without artificial nesting materials provided. Seven environmental variables were measured at each nest site: distance from water, height from water surface, sunlight duration, nearest bank slope, nest site slope, vegetation coverage and concealment. Statistical analyses indicated that concealment was significantly different between used and unused nest sites, with concealment being significantly correlated to the use of materials- placed sites. In comparing the nests at artificial vs. natural sites, only the nearest bank slope differed significantly. Further, principal component analysis of natural nests indicated that the duration of nest exposure to sunlight and vegetation coverage were more influential than the other factors studied. 展开更多
关键词 Chinese alligator NESTING artificial nest natural nest habitat use REINTRODUCTION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部