This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-dra...This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-drainage,and scanning electron microscopy(SEM)tests,the effects of prehydrolysis duration(T),urease activity(UA)and curing age(CA)on the mechanical properties and microstructural characteristics of bio-carbonized samples were systematically investigated and analyzed.The results demonstrated that the proposed method could significantly enhance urea hydrolysis and RMC bio-carbonation to achieve efficient stabilization of dredged sludge with 80%high water content.A significant strength increment of up to about 1063.36 kPa was obtained for the bio-carbonized samples after just 7 d of curing,which was 2.64 times higher than that of the 28-day cured ordinary Portland cement-reinforced samples.Both elevated T and UA could notably increase urea utilization ratio and carbonate ion yield,but the resulting surge in supersaturation also affected the precipitation patterns of hydrated magnesia carbonates(HMCs),which weakened the cementation effect of HMCs on soil particles and further inhibited strength enhancement of bio-carbonized samples.The optimum formula was determined to be the case of T?24 h and UA?10 U/mL for dredged sludge stabilization.A 7-day CA was enough for bio-carbonized samples to obtain stable strength,albeit slightly affected by UA.The benefits of high efficiency and water stability presented the potential of this method in achieving dredged sludge stabilization and resource utilization.This investigation provides informative ideas and valuable insights on implementing advanced bio-geotechnical techniques to achieve efficient stabilization of soft soil,such as dredged sludge.展开更多
The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities...The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to deter- mine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly in- crease soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0% to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m^3 is 2.8 times higher than that at 1.4 Mg/m^3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interracial mechanical interaction between fibre surface and soil matrix.展开更多
Purpose:As to January 11,2021,coronavirus disease(COVID-19)has caused more than 2 million deaths worldwide.Mainly diagnostic methods of COVID-19 are:(i)nucleic acid testing.This method requires high requirements on th...Purpose:As to January 11,2021,coronavirus disease(COVID-19)has caused more than 2 million deaths worldwide.Mainly diagnostic methods of COVID-19 are:(i)nucleic acid testing.This method requires high requirements on the sample testing environment.When collecting samples,staff are in a susceptible environment,which increases the risk of infection.(ii)chest computed tomography.The cost of it is high and some radiation in the scan process.(iii)chest X-ray images.It has the advantages of fast imaging,higher spatial recognition than chest computed tomography.Therefore,our team chose the chest X-ray images as the experimental dataset in this paper.Methods:We proposed a novel framework—BEVGG and three methods(BEVGGC-I,BEVGGC-II,and BEVGGC-III)to diagnose COVID-19 via chest X-ray images.Besides,we used biogeography-based optimization to optimize the values of hyperparameters of the convolutional neural network.Results:The experimental results show that the OA of our proposed three methods are 97.65%±0.65%,94.49%±0.22%and 94.81%±0.52%.BEVGGC-I has the best performance of all methods.Conclusions:The OA of BEVGGC-I is 9.59%±1.04%higher than that of state-of-the-art methods.展开更多
Hearing loss(HL)is a kind of common illness,which can significantly reduce the quality of life.For example,HL often results in mishearing,misunderstanding,and communication problems.Therefore,it is necessary to provid...Hearing loss(HL)is a kind of common illness,which can significantly reduce the quality of life.For example,HL often results in mishearing,misunderstanding,and communication problems.Therefore,it is necessary to provide early diagnosis and timely treatment for HL.This study investigated the advantages and disadvantages of three classical machine learning methods:multilayer perceptron(MLP),support vector machine(SVM),and least-square support vector machine(LS-SVM)approach andmade a further optimization of the LS-SVM model via wavelet entropy.The investigation illustrated that themultilayer perceptron is a shallowneural network,while the least square support vector machine uses hinge loss function and least-square optimizationmethod.Besides,a wavelet selection method was proposed,and we found db4 can achieve the best results.The experiments showed that the LS-SVM method can identify the hearing loss disease with an overall accuracy of three classes as 84.89±1.77,which is superior to SVM andMLP.The results show that the least-square support vector machine is effective in hearing loss identification.展开更多
Callovo-Oxfordian (COx) argillite obtained from the excavation of high-level radioactive waste geological disposal has been evaluated as an alternative sealing/backfill material in France. This paper presents an exp...Callovo-Oxfordian (COx) argillite obtained from the excavation of high-level radioactive waste geological disposal has been evaluated as an alternative sealing/backfill material in France. This paper presents an experimental investigation into the hydro-mechanical behaviour of compacted crushed COx argillite. A series of oedorneter compressive tests including various loading-unloading cycles were conducted on COx argillite powders at different initial water contents. After reaching the desired dry density (2.0 Mg/m^3), the vertical stress was reduced to different levels (7.0 and 0.5 MPa) and the compacted sample was then flooded under constant volume conditions while measuring the changes in the vertical stress. It was found that the initial water content significantly affects the compressive behaviour. The measured saturated hydraulic conductivity is less than 1×10^-10m/s.展开更多
On the basis of studying the influencing factors of training effect evaluation,this paper constructs an AHP-fuzzy comprehensive evaluation model for farmers’vocational training activities in Hainan Province to evalua...On the basis of studying the influencing factors of training effect evaluation,this paper constructs an AHP-fuzzy comprehensive evaluation model for farmers’vocational training activities in Hainan Province to evaluate farmers’training effect,which overcomes the limitations of traditional methods.Firstly,the content and index system of farmer training effect evaluation are established by analytic hierarchy process,and the weight value of each index is determined.Then,the fuzzy comprehensive evaluation(FCE)of farmer training effect is carried out by using multi-level FCE.The joint use of AHP and FCE improves the reliability and effectiveness of the evaluation process and results.The overall comprehensive evaluation result of the farmer training effect evaluation is“good”.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41925012 and 42230710)the Key Laboratory Cooperation Special Project of Western Cross Team of Western Light,CAS(Grant No.xbzg-zdsys-202107).
文摘This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-drainage,and scanning electron microscopy(SEM)tests,the effects of prehydrolysis duration(T),urease activity(UA)and curing age(CA)on the mechanical properties and microstructural characteristics of bio-carbonized samples were systematically investigated and analyzed.The results demonstrated that the proposed method could significantly enhance urea hydrolysis and RMC bio-carbonation to achieve efficient stabilization of dredged sludge with 80%high water content.A significant strength increment of up to about 1063.36 kPa was obtained for the bio-carbonized samples after just 7 d of curing,which was 2.64 times higher than that of the 28-day cured ordinary Portland cement-reinforced samples.Both elevated T and UA could notably increase urea utilization ratio and carbonate ion yield,but the resulting surge in supersaturation also affected the precipitation patterns of hydrated magnesia carbonates(HMCs),which weakened the cementation effect of HMCs on soil particles and further inhibited strength enhancement of bio-carbonized samples.The optimum formula was determined to be the case of T?24 h and UA?10 U/mL for dredged sludge stabilization.A 7-day CA was enough for bio-carbonized samples to obtain stable strength,albeit slightly affected by UA.The benefits of high efficiency and water stability presented the potential of this method in achieving dredged sludge stabilization and resource utilization.This investigation provides informative ideas and valuable insights on implementing advanced bio-geotechnical techniques to achieve efficient stabilization of soft soil,such as dredged sludge.
基金supported by the National Natural Science Foundation of China(Grant Nos.41072211,41322019)Natural Science Foundation of Jiangsu Province(Grant No.BK2011339)Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(SKLGP2013K010)
文摘The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to deter- mine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly in- crease soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0% to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m^3 is 2.8 times higher than that at 1.4 Mg/m^3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interracial mechanical interaction between fibre surface and soil matrix.
基金Key Science and Technology Program of Henan Province,China(212102310084)J.Sun,X.Li,and C.Tang received the grant.Provincial Key Laboratory for Computer Information Processing Technology,Soochow University(KJS2048),J.Sun received the grant.
文摘Purpose:As to January 11,2021,coronavirus disease(COVID-19)has caused more than 2 million deaths worldwide.Mainly diagnostic methods of COVID-19 are:(i)nucleic acid testing.This method requires high requirements on the sample testing environment.When collecting samples,staff are in a susceptible environment,which increases the risk of infection.(ii)chest computed tomography.The cost of it is high and some radiation in the scan process.(iii)chest X-ray images.It has the advantages of fast imaging,higher spatial recognition than chest computed tomography.Therefore,our team chose the chest X-ray images as the experimental dataset in this paper.Methods:We proposed a novel framework—BEVGG and three methods(BEVGGC-I,BEVGGC-II,and BEVGGC-III)to diagnose COVID-19 via chest X-ray images.Besides,we used biogeography-based optimization to optimize the values of hyperparameters of the convolutional neural network.Results:The experimental results show that the OA of our proposed three methods are 97.65%±0.65%,94.49%±0.22%and 94.81%±0.52%.BEVGGC-I has the best performance of all methods.Conclusions:The OA of BEVGGC-I is 9.59%±1.04%higher than that of state-of-the-art methods.
基金This research was supported by grants from the Ph.D.Programs Foundation of Henan Polytechnic University(B2016-38).
文摘Hearing loss(HL)is a kind of common illness,which can significantly reduce the quality of life.For example,HL often results in mishearing,misunderstanding,and communication problems.Therefore,it is necessary to provide early diagnosis and timely treatment for HL.This study investigated the advantages and disadvantages of three classical machine learning methods:multilayer perceptron(MLP),support vector machine(SVM),and least-square support vector machine(LS-SVM)approach andmade a further optimization of the LS-SVM model via wavelet entropy.The investigation illustrated that themultilayer perceptron is a shallowneural network,while the least square support vector machine uses hinge loss function and least-square optimizationmethod.Besides,a wavelet selection method was proposed,and we found db4 can achieve the best results.The experiments showed that the LS-SVM method can identify the hearing loss disease with an overall accuracy of three classes as 84.89±1.77,which is superior to SVM andMLP.The results show that the least-square support vector machine is effective in hearing loss identification.
基金Supported by the French National Radioactive Waste Management Agency
文摘Callovo-Oxfordian (COx) argillite obtained from the excavation of high-level radioactive waste geological disposal has been evaluated as an alternative sealing/backfill material in France. This paper presents an experimental investigation into the hydro-mechanical behaviour of compacted crushed COx argillite. A series of oedorneter compressive tests including various loading-unloading cycles were conducted on COx argillite powders at different initial water contents. After reaching the desired dry density (2.0 Mg/m^3), the vertical stress was reduced to different levels (7.0 and 0.5 MPa) and the compacted sample was then flooded under constant volume conditions while measuring the changes in the vertical stress. It was found that the initial water content significantly affects the compressive behaviour. The measured saturated hydraulic conductivity is less than 1×10^-10m/s.
基金This work was supported by the Hainan Provincial Natural Science Foundation(618ms025)the Hainan Higher Education and Teaching Reform Research(hnjg2020-12).
文摘On the basis of studying the influencing factors of training effect evaluation,this paper constructs an AHP-fuzzy comprehensive evaluation model for farmers’vocational training activities in Hainan Province to evaluate farmers’training effect,which overcomes the limitations of traditional methods.Firstly,the content and index system of farmer training effect evaluation are established by analytic hierarchy process,and the weight value of each index is determined.Then,the fuzzy comprehensive evaluation(FCE)of farmer training effect is carried out by using multi-level FCE.The joint use of AHP and FCE improves the reliability and effectiveness of the evaluation process and results.The overall comprehensive evaluation result of the farmer training effect evaluation is“good”.