期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design 被引量:1
1
作者 Rongrong Deng Mengwei Guo +1 位作者 chaowu wang Qibo Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts Water splitting Hydrogen production Catalytic mechanism Synthesis technique Optimization design
下载PDF
Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction: Fundamentals, performance optimization,and prospects 被引量:1
2
作者 Mengwei Guo Rongrong Deng +1 位作者 chaowu wang Qibo Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期537-553,I0015,共18页
The oxygen evolution reaction(OER) is the basis of various sustainable energy conversion and storage techniques,especially hydrogen production by water electrolysis.To realize the practical application of hydrogen ene... The oxygen evolution reaction(OER) is the basis of various sustainable energy conversion and storage techniques,especially hydrogen production by water electrolysis.To realize the practical application of hydrogen energy and mass-scale hydrogen production via water electrolysis,several obstacles,such as the multi-electron transfer OER process with sluggish kinetics and overall high reaction barrier,should be overcome.Manganese oxide-based(MnOx) materials,especially MnO_(2),have emerged as promising non-noble electrocatalysts for water electro-oxidation under acidic conditions due to their wellbalanced properties between catalytic activity and stability.This review introduces the fundamental understanding of the catalytic OER process on MnOx-based materials,including the conventional adsorbate evolution mechanism(AEM) and emerging lattice oxygen oxidation mechanism(LOM).The rational screening and prediction of MnOx-based catalysts that can stably catalyze OER in acid are summarized based on Pourbaix diagram analysis and thermodynamic density functional theory(DFT) calculations.Then,the up-to-date progress of upgrading the OER catalytic performance of MnOx-based catalysts by composite construction is reviewed.Afterward,feasible strategies to improve the electrocatalytic activity and lifetime of MnOx-based catalysts are systemically discussed in terms of crystal structure control,reasonable setting of working potential and electrolyte environment,optimal selection of acid-stable conductive supports,and self-healing engineering.Finally,future scientific challenges and research directions are outlined to guide the construction of advanced MnOx-based electrocatalysts for OER in acid. 展开更多
关键词 Manganese oxide-based materials Manganese dioxides ELECTROCATALYSTS Oxygen evolution reaction Acidic solution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部