With the increasing demand for smart wearable clothing, the textile piezoelectric pressure sensor (T-PEPS) that can harvest mechanical energy directly has attracted significant attention. However, the current challeng...With the increasing demand for smart wearable clothing, the textile piezoelectric pressure sensor (T-PEPS) that can harvest mechanical energy directly has attracted significant attention. However, the current challenge of T-PEPS lies in remaining the outstanding output performance without compromising its wearing comfort. Here, a novel structural hierarchy T-PEPS based on the single-crystalline ZnO nanorods are designed. The T-PEPS is constructed with three layers mode consisting of a polyvinylidene fluoride (PVDF) membrane, the top and bottom layers of conductive rGO polyester (PET) fabrics with self-orientation ZnO nanorods. As a result, the as-fabricated T-PEPS shows low detection limit up to 8.71 Pa, high output voltage to 11.47 V and superior mechanical stability. The sensitivity of the sensor is 0.62 V·kPa−1 in the pressure range of 0–2.25 kPa. Meanwhile, the T-PEPS is employed to detect human movements such as bending/relaxation motion of the wrist, bending/stretching motion of each finger. It is demonstrated that the T-PEPS can be up-scaled to promote the application of wearable sensor platforms and self-powered devices.展开更多
Smart fabrics have made remarkable progress in the field of wearable electronics because of their unique structure,flexibility and breathability,which are highly desirable with integrated multifunctionality.Here,a sup...Smart fabrics have made remarkable progress in the field of wearable electronics because of their unique structure,flexibility and breathability,which are highly desirable with integrated multifunctionality.Here,a superhydrophobic smart fabric has been fabricated by decorating conductive MXene on nylon fabric modified by polydopamine(PDA),followed by spraying hydrophobic materials(SiO_(2) and FOTS).The hydrophobic layer not only provides the fabric with superhydrophobicity,but also protects MXene from oxidation.Highly conductive MXene-wrapped fibers endow the fabric with adjustable conductivity and many satisfactory functions.Commendably,the smart fabric possesses sensing performances of ultralow detection limit(0.2%strain),fast response time(60 ms),short recovery time(90 ms),and outstanding sensing stability(5000 cycles).These sensing performances allow the smart fabric to accurately detect body respiratory signals in the running state,exercise state and sleep state,thus keeping track of respiratory health information.Moreover,the smart fabric also exhibits outstanding EMI shielding effectiveness(66.5 dB)in the X-band,satisfactory photothermal performance(68.6℃at 100 mW/cm2),and excellent electrothermal conversion capability(up to 102.3℃at 8 V).Therefore,the smart fabric is extremely promising for applications in EMI shielding,thermal management,and respiratory monitoring,and is an ideal candidate for smart clothing and as a medical diagnostic tool.展开更多
A large of energy consumption is required for indoor and outdoor personal heating to ameliorate the comfortable and healthy conditions.Main personal thermal management strategy is to reflect mid-infrared human body ra...A large of energy consumption is required for indoor and outdoor personal heating to ameliorate the comfortable and healthy conditions.Main personal thermal management strategy is to reflect mid-infrared human body radiation for human surface temperature(THS)regulation.We demonstrate a visible Janus light absorbent/reflective air-layer fabric(Janus A/R fabric)that can passively reflect radiative heating meanwhile can actively capture the solar energy.A series of azobenzene derivatives functionalized with alkyl tails are reported to co-harvest the solar and phase-change energy.The THS covered by Janus A/R fabric can be heated up to~3.7°C higher than that covered by air-layer fabric in cold environment(5°C).Besides,integrating the thermo-and photo-chromic properties is capable of monitoring comfort THS and residue energy storage enthalpy,respectively.According to the colour monitors,intermittent irradiation approach is proposed to prolong comfortable-THS holding time for managing energy efficiently.展开更多
基金This study was supported by National First-Class Discipline Program of Light Industry Technology and Engineering(No.LITE2018-21)the National Key Research and Development Program of China(Nos.2018YFC2000903 and 2019YFC1711701)+2 种基金the National Natural Science Foundation of China(Nos.21975107,61803364,and U1913216)the Fundamental Research Funds for the Central Universities(No.JUSRP51724B)the Shenzhen Fundamental Research and Discipline Layout Project(No.JCYJ20180302145549896).
文摘With the increasing demand for smart wearable clothing, the textile piezoelectric pressure sensor (T-PEPS) that can harvest mechanical energy directly has attracted significant attention. However, the current challenge of T-PEPS lies in remaining the outstanding output performance without compromising its wearing comfort. Here, a novel structural hierarchy T-PEPS based on the single-crystalline ZnO nanorods are designed. The T-PEPS is constructed with three layers mode consisting of a polyvinylidene fluoride (PVDF) membrane, the top and bottom layers of conductive rGO polyester (PET) fabrics with self-orientation ZnO nanorods. As a result, the as-fabricated T-PEPS shows low detection limit up to 8.71 Pa, high output voltage to 11.47 V and superior mechanical stability. The sensitivity of the sensor is 0.62 V·kPa−1 in the pressure range of 0–2.25 kPa. Meanwhile, the T-PEPS is employed to detect human movements such as bending/relaxation motion of the wrist, bending/stretching motion of each finger. It is demonstrated that the T-PEPS can be up-scaled to promote the application of wearable sensor platforms and self-powered devices.
基金the National Natural Science Foundation of China(21975107)China Scholarship Council(no.202206790046).
文摘Smart fabrics have made remarkable progress in the field of wearable electronics because of their unique structure,flexibility and breathability,which are highly desirable with integrated multifunctionality.Here,a superhydrophobic smart fabric has been fabricated by decorating conductive MXene on nylon fabric modified by polydopamine(PDA),followed by spraying hydrophobic materials(SiO_(2) and FOTS).The hydrophobic layer not only provides the fabric with superhydrophobicity,but also protects MXene from oxidation.Highly conductive MXene-wrapped fibers endow the fabric with adjustable conductivity and many satisfactory functions.Commendably,the smart fabric possesses sensing performances of ultralow detection limit(0.2%strain),fast response time(60 ms),short recovery time(90 ms),and outstanding sensing stability(5000 cycles).These sensing performances allow the smart fabric to accurately detect body respiratory signals in the running state,exercise state and sleep state,thus keeping track of respiratory health information.Moreover,the smart fabric also exhibits outstanding EMI shielding effectiveness(66.5 dB)in the X-band,satisfactory photothermal performance(68.6℃at 100 mW/cm2),and excellent electrothermal conversion capability(up to 102.3℃at 8 V).Therefore,the smart fabric is extremely promising for applications in EMI shielding,thermal management,and respiratory monitoring,and is an ideal candidate for smart clothing and as a medical diagnostic tool.
基金support of National Natural Science Foundation of China(21975107)Natural Science Foundation of Jiangsu Province(SBK2019020945)+2 种基金National First-Class Discipline Program of Light Industry Technology and Engineering(LITE2018-21)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_1783)China Scholarship Council(202006790096).
文摘A large of energy consumption is required for indoor and outdoor personal heating to ameliorate the comfortable and healthy conditions.Main personal thermal management strategy is to reflect mid-infrared human body radiation for human surface temperature(THS)regulation.We demonstrate a visible Janus light absorbent/reflective air-layer fabric(Janus A/R fabric)that can passively reflect radiative heating meanwhile can actively capture the solar energy.A series of azobenzene derivatives functionalized with alkyl tails are reported to co-harvest the solar and phase-change energy.The THS covered by Janus A/R fabric can be heated up to~3.7°C higher than that covered by air-layer fabric in cold environment(5°C).Besides,integrating the thermo-and photo-chromic properties is capable of monitoring comfort THS and residue energy storage enthalpy,respectively.According to the colour monitors,intermittent irradiation approach is proposed to prolong comfortable-THS holding time for managing energy efficiently.