Four short cores were obtained from the coastal wetland of the Quanzhou Bay,Fujian Province,China,and sediment samples were analyzed with a Mastersizer 2000 for grain size analysis and an Inductively Coupled Plasma At...Four short cores were obtained from the coastal wetland of the Quanzhou Bay,Fujian Province,China,and sediment samples were analyzed with a Mastersizer 2000 for grain size analysis and an Inductively Coupled Plasma Atomic Emission Spectrometer(ICP-AES) for trace metal analysis. The results of grain size analysis show that the wetland sediments are mainly composed of silt and clay,and the distribution of median grain size is affected by human activities obviously. The results of trace metal analysis show that the wetland sediments mainly originate from terrestrial materials in the Luoyangjiang River estuary and from contaminants discharged from adjacent rivers in Shuitou area. The heavy metal contamination in Luoyangjiang estuary decreased from 1984 to 2004 due to industry transformation,but has increased since 2004 because of the discharge of contaminants to the Jinjiang River and much living sewerage to the bay,and a large number of trace metals are trapped within Spartina alterniflora marsh.展开更多
In coastal environments, fine-grain sediments often aggregate into large and porous flocs. ElectroMagnetic Current Meters (EMCM) and Laser In Situ Scattering and Transmissometry (LISST-ST) have been deployed withi...In coastal environments, fine-grain sediments often aggregate into large and porous flocs. ElectroMagnetic Current Meters (EMCM) and Laser In Situ Scattering and Transmissometry (LISST-ST) have been deployed within a Spartina alterniflora marsh of the Luoyuan Bay in Fujian Province, China, to measure the current velocity, the floc size and the settling velocity between 15 and 22 January 2008. During the observations, the near-bed water was collected in order to obtain the suspended sediment concentration (SSC) and constituent grain size. Data show that: (1) the nearbed current velocities vary from 0.1 to 5.6 cm/s in the central Spartina alterniflora marsh and 0.1–12.5 cm/s at the edge; (2) the SSCs vary from 47 to 188 mg/dm 3 . The mean grain size of constituent grains varies from 7.0 to 9.6 μm, and the mean floc sizes (MFS) vary from 30.4 to 69.4 μm. The relationship between the mean floc size and settling velocity can be described as: w s =ad b , in which w s is the floc settling velocity (mm/s), a and b are coefficients. The floc settling velocity varies from 0.17 to 0.32 mm/s, with a mean value of 0.26 mm/s, and the floc settling velocity during the flood tide is higher than that during the ebb tide. The current velocity and the SSC are the main factors controlling the flocculation processes and the floc settling velocity.展开更多
A buoy of 10 m in diameter was used to record the current speed and direction in a vertical profile in the offshore area of the Changjiang(Yangtze River) Estuary(with an average water depth of 46.0 m) for one year...A buoy of 10 m in diameter was used to record the current speed and direction in a vertical profile in the offshore area of the Changjiang(Yangtze River) Estuary(with an average water depth of 46.0 m) for one year.The results include:(1) the currents rotate clockwise and the current direction is consistent in a vertical profile without clear seasonal variations.(2) The horizontal current speeds are generally high,with a maximum of 128.5 cm/s occurring in summer and 105.5 cm/s appearing in winter commonly close to the surface.The average current speeds in the vertical profile fall in the same range(the differences are less than 8.0 cm/s),with the maximum of47.0 cm/s occurring in summer and 40.8 cm/s in winter.The average current speed during spring tides is twice that during neap tides(26.5 cm/s).(3) Significant differences of speeds are observed in the vertical profile.The maximum current speed occurs at either surface(spring and winter) or sub-surface(summer and autumn),with the minimum current speed appearing at the bottom.The maximum average current speed of all layers is 57.9cm/s,which occurs in the 18-m layer during summer.(4) The average speed of the residual currents ranges from7.5 cm/s to 11.3 cm/s,with the strongest occurring in spring and weakest in winter.The residual currents of all layers are eastward during spring and winter,whereas northeastward or northward during summer and autumn.(5) The currents in the offshore of Changjiang Estuary are impacted collectively by diluted Changjiang River discharge,the Taiwan Warm Current,monsoon and tides.展开更多
基金Under the auspices of Science Foundation of Fujian Province (No. D0510025)National Natural Science Foundation of China (No. 40606012)
文摘Four short cores were obtained from the coastal wetland of the Quanzhou Bay,Fujian Province,China,and sediment samples were analyzed with a Mastersizer 2000 for grain size analysis and an Inductively Coupled Plasma Atomic Emission Spectrometer(ICP-AES) for trace metal analysis. The results of grain size analysis show that the wetland sediments are mainly composed of silt and clay,and the distribution of median grain size is affected by human activities obviously. The results of trace metal analysis show that the wetland sediments mainly originate from terrestrial materials in the Luoyangjiang River estuary and from contaminants discharged from adjacent rivers in Shuitou area. The heavy metal contamination in Luoyangjiang estuary decreased from 1984 to 2004 due to industry transformation,but has increased since 2004 because of the discharge of contaminants to the Jinjiang River and much living sewerage to the bay,and a large number of trace metals are trapped within Spartina alterniflora marsh.
基金The National Natural Science Foundation of China under contract No. 40606012the Scientific Research Foundation of Third Institute of Oceanography, State Oceanic Administration under contract No. 2009015
文摘In coastal environments, fine-grain sediments often aggregate into large and porous flocs. ElectroMagnetic Current Meters (EMCM) and Laser In Situ Scattering and Transmissometry (LISST-ST) have been deployed within a Spartina alterniflora marsh of the Luoyuan Bay in Fujian Province, China, to measure the current velocity, the floc size and the settling velocity between 15 and 22 January 2008. During the observations, the near-bed water was collected in order to obtain the suspended sediment concentration (SSC) and constituent grain size. Data show that: (1) the nearbed current velocities vary from 0.1 to 5.6 cm/s in the central Spartina alterniflora marsh and 0.1–12.5 cm/s at the edge; (2) the SSCs vary from 47 to 188 mg/dm 3 . The mean grain size of constituent grains varies from 7.0 to 9.6 μm, and the mean floc sizes (MFS) vary from 30.4 to 69.4 μm. The relationship between the mean floc size and settling velocity can be described as: w s =ad b , in which w s is the floc settling velocity (mm/s), a and b are coefficients. The floc settling velocity varies from 0.17 to 0.32 mm/s, with a mean value of 0.26 mm/s, and the floc settling velocity during the flood tide is higher than that during the ebb tide. The current velocity and the SSC are the main factors controlling the flocculation processes and the floc settling velocity.
基金The Major State Basic Research Development Program under contract No.2013CB956502the State Key Laboratory of Estuarine and Coastal Research Funds under contract No.SKLEC200906the National Natural Science Foundation of China under contract No.41625021
文摘A buoy of 10 m in diameter was used to record the current speed and direction in a vertical profile in the offshore area of the Changjiang(Yangtze River) Estuary(with an average water depth of 46.0 m) for one year.The results include:(1) the currents rotate clockwise and the current direction is consistent in a vertical profile without clear seasonal variations.(2) The horizontal current speeds are generally high,with a maximum of 128.5 cm/s occurring in summer and 105.5 cm/s appearing in winter commonly close to the surface.The average current speeds in the vertical profile fall in the same range(the differences are less than 8.0 cm/s),with the maximum of47.0 cm/s occurring in summer and 40.8 cm/s in winter.The average current speed during spring tides is twice that during neap tides(26.5 cm/s).(3) Significant differences of speeds are observed in the vertical profile.The maximum current speed occurs at either surface(spring and winter) or sub-surface(summer and autumn),with the minimum current speed appearing at the bottom.The maximum average current speed of all layers is 57.9cm/s,which occurs in the 18-m layer during summer.(4) The average speed of the residual currents ranges from7.5 cm/s to 11.3 cm/s,with the strongest occurring in spring and weakest in winter.The residual currents of all layers are eastward during spring and winter,whereas northeastward or northward during summer and autumn.(5) The currents in the offshore of Changjiang Estuary are impacted collectively by diluted Changjiang River discharge,the Taiwan Warm Current,monsoon and tides.