轻子散射实验是探索核子与原子核结构的理想工具。中国电子离子对撞机(Electron Ion Collider in China,EicC)建议书设想在已开建的强流重离子加速器装置(High Intensity heavy ion Accelerator Facility,HIAF)的基础上,升级质子束流为2...轻子散射实验是探索核子与原子核结构的理想工具。中国电子离子对撞机(Electron Ion Collider in China,EicC)建议书设想在已开建的强流重离子加速器装置(High Intensity heavy ion Accelerator Facility,HIAF)的基础上,升级质子束流为20 GeV的极化束流,并建造2.8~5 GeV极化电子束流,从而实现质心系能量为15~20 GeV的双极化电子-离子对撞。EicC设计的亮度为(2~4)×10^33cm^-2·s^-1,质子束流极化率达到70%,电子束流极化率达到80%。该装置除了能提供极化轻离子束流(例如:氦-3)外,也可产生非极化重离子束流(碳-12~铀-238)。EicC将聚焦核子海夸克部分子结构、原子核物质结构与性质、奇特强子态三个方面的物理研究。高亮度、高精度的对撞机有助于精确地测量核子结构函数并对核子进行三维成像,揭示强相互作用的动力学规律;原子核部分子分布包括核子短程关联以及原子核介质效应同样是该提案的重要科学目标;EicC能区接近重味夸克产生阈值,在研究重味强子谱方面拥有低背景的独特优势,有助于发现研究新的奇特强子态。质子质量起源问题也可以通过重味矢量介子的产生来研究。为了完成上述物理目标,我们将利用最先进的探测器技术建造接近全立体角覆盖的EicC对撞机谱仪。在准备EicC白皮书的过程中,我们得到世界各国专家的支持。EicC的物理与已有的实验和美国即将建设的EIC中的物理项目相互补充。EicC的建成及运行有望引领前沿的中高能核物理研究,使我国在加速器和探测器先进技术等领域实现跨越式发展,为我国核物理与强子物理以及相关科学领域提供大型综合实验平台与人才培养基地。展开更多
大规模风电接入交直流互联电网,对自动发电控制(automatic generation control,AGC)的控制性能及调频能力提出了更高的要求。在风电参与电力系统调频的基础上,提出基于功率调制控制器(supplementary power modulation controller,SPMC)...大规模风电接入交直流互联电网,对自动发电控制(automatic generation control,AGC)的控制性能及调频能力提出了更高的要求。在风电参与电力系统调频的基础上,提出基于功率调制控制器(supplementary power modulation controller,SPMC)的区域间功率补偿策略。首先,考虑到高压直流输电(high voltage direct current,HVDC)环节过载率变化的弹性特征,提出一种同时考虑功率与频率变化的自适应动态SPMC策略,使其在参与系统调频时,能有效提升HVDC中功率调整的快速性;其次,在HVDC链路主动参与系统调频的基础上,考虑风电的不确定性,利用综合惯性控制改变风电输出功率,以进一步提升系统调频性能指标。仿真结果表明,所提策略的动态功率调制特性可以有效提升区域间功率传输的针对性,并提高电网调频效果。展开更多
In the classical constituent quark model (CQM), all baryons can be described as three-quark (qqq) states.However, many difficulties and deviations have emerged in explaining the mass spectra and decay properties ofsom...In the classical constituent quark model (CQM), all baryons can be described as three-quark (qqq) states.However, many difficulties and deviations have emerged in explaining the mass spectra and decay properties ofsome baryons by using the CQM, such as the strong coupling of N(1535) to the final states with strangeness andthe mass inverse problem between N(1535) and N(1440). In order to solve the above problems, pentaquark (qqqq ̄q)models for some excited baryons are introduced by researchers. However, since many conventional quark modelshave adjustable ingredients, it will be difficult to distinguish the N(1535) and many other proposed dynamicalgenerated states from those generated states (qqq for baryons and q ̄q for mesons) in these classical quark models.This difficult can be avoid if we can find the hidden charm baryons composed by qqqc ̄c quarks.展开更多
As an exotic charmonium-like state, the Z(4430) has attracted a lot of attention after it was found in the ′?invariant mass distribution in B ! ′?K decays by the Belle Collaboration[1]. In 2013, the existence of t...As an exotic charmonium-like state, the Z(4430) has attracted a lot of attention after it was found in the ′?invariant mass distribution in B ! ′?K decays by the Belle Collaboration[1]. In 2013, the existence of thischarged Z±(4430) state was confirmed from a full amplitude analysis of the subsequently updated results on theB! ′?K decays by Belle Collaboration[2]. Very recently, the LHCb Collaboration reported the first independentconfirmation of the existence of the charged Z?(4430) with 4D model-dependent amplitude method[3]. In addition,its spin parity (JP ) was measured to be JP =1+. The most possible explanation would be considering the Z(4430)as a tetraquark state. If the charged Z±(4430) is indeed a tetraquark state, then the lightest charged four-quarkstate should be constructed by (c ̄cu ̄d or c ̄cd ̄u) quarks.展开更多
In 2014, researchers in the high energy nuclear physics group at IMP have carried out their research work onhadron physics. Several interesting results were obtained and published.The meson and baryon excited states h...In 2014, researchers in the high energy nuclear physics group at IMP have carried out their research work onhadron physics. Several interesting results were obtained and published.The meson and baryon excited states have been studied in a large number of formation and production experiments.The study of meson resonances and the search for glueballs, hybrids, and multiquark states have remainedan active and interesting field of hadron physics, while for baryons, the investigation of the baryon spectrum andthe baryon couplings from experimental data are also the most important issues in hadronic physics and theyare attracting much attention. Studying hadron resonances is crucial to understand deeply the QCD theory atnonperturbative energy region, and it is also important for nuclear physics and particle physics.展开更多
In the framework of dynamical parton distribution model,we obtain the polarized parton distribution functions from a QCD global analysis of the worldwide polarized deep inelastic scattering data.In the analysis,we app...In the framework of dynamical parton distribution model,we obtain the polarized parton distribution functions from a QCD global analysis of the worldwide polarized deep inelastic scattering data.In the analysis,we apply the DGLAP equations with parton-parton recombination corrections.All the sea quarks and gluons are dynamically generated from QCD radiations processes,with the nonperturbative input comprising only the polarized valence quark distributions.展开更多
Nucleon(proton or neutron)is the main building block of the visible matter,which contributes around 99% of the mass of the observable universe.However,we still do not know how do its basic properties arise from,such a...Nucleon(proton or neutron)is the main building block of the visible matter,which contributes around 99% of the mass of the observable universe.However,we still do not know how do its basic properties arise from,such as its mass and its spin.展开更多
As shown in Fig.1,the newly proposed Quark Matter Research Center(QMRC)is made of three research divisions focusing on Quark Matter Phase Structure,Hadron Structure and the Neutrino Nature.In addition,a detector resea...As shown in Fig.1,the newly proposed Quark Matter Research Center(QMRC)is made of three research divisions focusing on Quark Matter Phase Structure,Hadron Structure and the Neutrino Nature.In addition,a detector research group,focusing on solid-state pixel detector,which supports all experimental activities of the above three research groups.In this report,we will describe the physics of these groups in QMRC at IMP.展开更多
Neutrino oscillations have been observed in solar and atmosphere neutrino experiments[1,2],and confirmed independently by accelerator and reactor neutrino experiments[3-5].However,some anomalies have been observed in ...Neutrino oscillations have been observed in solar and atmosphere neutrino experiments[1,2],and confirmed independently by accelerator and reactor neutrino experiments[3-5].However,some anomalies have been observed in neutrino experiments with different sources,detector principles and detection channels[6-13],which can not be accommodated within the standard three-flavour neutrino paradigm.These anomalous results may be a sign of further new physics beyond Standard Model and currently their most popular interpretation is the existence of sterile neutrino states with masses at the eV scale.Sterile neutrino states are a key issue in searches for new physics beyond the Standard Model,and their existence and properties would also have important implications in astrophysics and cosmology.展开更多
Here we give research highlight of theoretical physics and experimental simulation at High Energy Nuclear Physics Group during the year of 2016.In theoretical hadron physics,we paid special attention to the hadron pro...Here we give research highlight of theoretical physics and experimental simulation at High Energy Nuclear Physics Group during the year of 2016.In theoretical hadron physics,we paid special attention to the hadron production and their structures.The f0(500),f0(980)and a0(980)meson productions in the K-p reaction andXc1→ηπ+π-,Λ+c→π+ηΛdecays are systematically explored in the effective model[1,2].The dynamically generated states f′2(1525)and K*2(1430)are investigated in the photoproduction on proton target[3].We also studied the high lying isospin-1=2 nucleon resonances with the mass of around 2.0 GeV in theπN!η′N reaction and J=ψ!p ̄pη′decay[4].展开更多
本文概述了基于粒子加速器的核物理研究主要的前沿方向和重要科学问题,分析了用于核物理研究的粒子加速器大科学装置发展现状和未来发展态势.国家"十二五"重大科技基础设施"强流重离子加速器装置"(High Intensity h...本文概述了基于粒子加速器的核物理研究主要的前沿方向和重要科学问题,分析了用于核物理研究的粒子加速器大科学装置发展现状和未来发展态势.国家"十二五"重大科技基础设施"强流重离子加速器装置"(High Intensity heavy-ion Accelerator Facility,HIAF)和"加速器驱动的嬗变研究装置"(China Initiative Accelerator Driven System,CiADS)正在广东惠州建设.以HIAF和CiADS为基础,本文提出建设用于核物理及其交叉前沿研究的大型带电粒子加速器集群装置——高亮度电子-离子研究装置(Bright Electron and Ion Research Facility,BEIF).依托BEIF装置拟开展的核物理前沿研究方向包括原子核结构、核天体物理、核子结构、夸克物质相结构,以及基础物理若干重要前沿与核物理的交叉,如高离化态原子物理、重离子驱动的高能量密度物理等.BEIF是由多台超导直线加速器、同步加速器、储存环、反应堆和各类大型实验探测器及实验终端等组成的大科学装置集群.BEIF计划分三期进行建设,建成后的装置将极大地推动我国的核物理和核科学技术研究能力的提升.展开更多
核子(质子和中子的总称)大约占宇宙中可见物质总质量的99%.作为构成宇宙可见物质中的最主要成分,核子也是研究强相互作用,尤其是禁闭区非微扰QCD的重要实验室.电子离子对撞机(Electron Ion Collider, EIC),被称作当代卢瑟福散射实验,是...核子(质子和中子的总称)大约占宇宙中可见物质总质量的99%.作为构成宇宙可见物质中的最主要成分,核子也是研究强相互作用,尤其是禁闭区非微扰QCD的重要实验室.电子离子对撞机(Electron Ion Collider, EIC),被称作当代卢瑟福散射实验,是人类认识物质世界深层次结构,特别是核子与原子核结构的理想工具.中国极化电子离子对撞机项目设想在已开建的HIAF高能离子束的基础上升级建造中国电子-离子对撞机(EIC in China,EicC),为我国核物理与粒子物理以及相关科学领域提供大型综合实验平台.本文综述了EicC在核子内不同味道海夸克的一维自旋味道结构、横动量依赖部分子分布函数、广义部分子分布函数测量的理论和模拟研究,展示了EicC在以上测量中可达到的预期精度,以及与现有测量精度的对比.另外,本文也综述了EicC在质子质量起源、重味强子谱、核介质效应及π介子的内部结构等重要物理问题中的潜在贡献,以及EicC探测器概念设计.EicC装置将有力地促进人们对核子自旋和质量的起源、夸克胶子禁闭机制等基本问题的理解.展开更多
文摘轻子散射实验是探索核子与原子核结构的理想工具。中国电子离子对撞机(Electron Ion Collider in China,EicC)建议书设想在已开建的强流重离子加速器装置(High Intensity heavy ion Accelerator Facility,HIAF)的基础上,升级质子束流为20 GeV的极化束流,并建造2.8~5 GeV极化电子束流,从而实现质心系能量为15~20 GeV的双极化电子-离子对撞。EicC设计的亮度为(2~4)×10^33cm^-2·s^-1,质子束流极化率达到70%,电子束流极化率达到80%。该装置除了能提供极化轻离子束流(例如:氦-3)外,也可产生非极化重离子束流(碳-12~铀-238)。EicC将聚焦核子海夸克部分子结构、原子核物质结构与性质、奇特强子态三个方面的物理研究。高亮度、高精度的对撞机有助于精确地测量核子结构函数并对核子进行三维成像,揭示强相互作用的动力学规律;原子核部分子分布包括核子短程关联以及原子核介质效应同样是该提案的重要科学目标;EicC能区接近重味夸克产生阈值,在研究重味强子谱方面拥有低背景的独特优势,有助于发现研究新的奇特强子态。质子质量起源问题也可以通过重味矢量介子的产生来研究。为了完成上述物理目标,我们将利用最先进的探测器技术建造接近全立体角覆盖的EicC对撞机谱仪。在准备EicC白皮书的过程中,我们得到世界各国专家的支持。EicC的物理与已有的实验和美国即将建设的EIC中的物理项目相互补充。EicC的建成及运行有望引领前沿的中高能核物理研究,使我国在加速器和探测器先进技术等领域实现跨越式发展,为我国核物理与强子物理以及相关科学领域提供大型综合实验平台与人才培养基地。
文摘大规模风电接入交直流互联电网,对自动发电控制(automatic generation control,AGC)的控制性能及调频能力提出了更高的要求。在风电参与电力系统调频的基础上,提出基于功率调制控制器(supplementary power modulation controller,SPMC)的区域间功率补偿策略。首先,考虑到高压直流输电(high voltage direct current,HVDC)环节过载率变化的弹性特征,提出一种同时考虑功率与频率变化的自适应动态SPMC策略,使其在参与系统调频时,能有效提升HVDC中功率调整的快速性;其次,在HVDC链路主动参与系统调频的基础上,考虑风电的不确定性,利用综合惯性控制改变风电输出功率,以进一步提升系统调频性能指标。仿真结果表明,所提策略的动态功率调制特性可以有效提升区域间功率传输的针对性,并提高电网调频效果。
文摘In the classical constituent quark model (CQM), all baryons can be described as three-quark (qqq) states.However, many difficulties and deviations have emerged in explaining the mass spectra and decay properties ofsome baryons by using the CQM, such as the strong coupling of N(1535) to the final states with strangeness andthe mass inverse problem between N(1535) and N(1440). In order to solve the above problems, pentaquark (qqqq ̄q)models for some excited baryons are introduced by researchers. However, since many conventional quark modelshave adjustable ingredients, it will be difficult to distinguish the N(1535) and many other proposed dynamicalgenerated states from those generated states (qqq for baryons and q ̄q for mesons) in these classical quark models.This difficult can be avoid if we can find the hidden charm baryons composed by qqqc ̄c quarks.
文摘As an exotic charmonium-like state, the Z(4430) has attracted a lot of attention after it was found in the ′?invariant mass distribution in B ! ′?K decays by the Belle Collaboration[1]. In 2013, the existence of thischarged Z±(4430) state was confirmed from a full amplitude analysis of the subsequently updated results on theB! ′?K decays by Belle Collaboration[2]. Very recently, the LHCb Collaboration reported the first independentconfirmation of the existence of the charged Z?(4430) with 4D model-dependent amplitude method[3]. In addition,its spin parity (JP ) was measured to be JP =1+. The most possible explanation would be considering the Z(4430)as a tetraquark state. If the charged Z±(4430) is indeed a tetraquark state, then the lightest charged four-quarkstate should be constructed by (c ̄cu ̄d or c ̄cd ̄u) quarks.
文摘In 2014, researchers in the high energy nuclear physics group at IMP have carried out their research work onhadron physics. Several interesting results were obtained and published.The meson and baryon excited states have been studied in a large number of formation and production experiments.The study of meson resonances and the search for glueballs, hybrids, and multiquark states have remainedan active and interesting field of hadron physics, while for baryons, the investigation of the baryon spectrum andthe baryon couplings from experimental data are also the most important issues in hadronic physics and theyare attracting much attention. Studying hadron resonances is crucial to understand deeply the QCD theory atnonperturbative energy region, and it is also important for nuclear physics and particle physics.
基金Strategic Priority Research Program of Chinese Academy of Sciences(XDB34030300)National Natural Science Foundation of China(12005266)Guangdong Major Project of Basic and Applied Basic Research(2020B0301030008)。
文摘In the framework of dynamical parton distribution model,we obtain the polarized parton distribution functions from a QCD global analysis of the worldwide polarized deep inelastic scattering data.In the analysis,we apply the DGLAP equations with parton-parton recombination corrections.All the sea quarks and gluons are dynamically generated from QCD radiations processes,with the nonperturbative input comprising only the polarized valence quark distributions.
基金National Natural Science Foundation of China(11875296,11675223)Key Research Program of Chinese Academy of Sciences(XDPB09)CAS Key Research Program of Frontier Sciences(QYZDY-SSW-SLH006)。
文摘Nucleon(proton or neutron)is the main building block of the visible matter,which contributes around 99% of the mass of the observable universe.However,we still do not know how do its basic properties arise from,such as its mass and its spin.
文摘As shown in Fig.1,the newly proposed Quark Matter Research Center(QMRC)is made of three research divisions focusing on Quark Matter Phase Structure,Hadron Structure and the Neutrino Nature.In addition,a detector research group,focusing on solid-state pixel detector,which supports all experimental activities of the above three research groups.In this report,we will describe the physics of these groups in QMRC at IMP.
文摘Neutrino oscillations have been observed in solar and atmosphere neutrino experiments[1,2],and confirmed independently by accelerator and reactor neutrino experiments[3-5].However,some anomalies have been observed in neutrino experiments with different sources,detector principles and detection channels[6-13],which can not be accommodated within the standard three-flavour neutrino paradigm.These anomalous results may be a sign of further new physics beyond Standard Model and currently their most popular interpretation is the existence of sterile neutrino states with masses at the eV scale.Sterile neutrino states are a key issue in searches for new physics beyond the Standard Model,and their existence and properties would also have important implications in astrophysics and cosmology.
文摘Here we give research highlight of theoretical physics and experimental simulation at High Energy Nuclear Physics Group during the year of 2016.In theoretical hadron physics,we paid special attention to the hadron production and their structures.The f0(500),f0(980)and a0(980)meson productions in the K-p reaction andXc1→ηπ+π-,Λ+c→π+ηΛdecays are systematically explored in the effective model[1,2].The dynamically generated states f′2(1525)and K*2(1430)are investigated in the photoproduction on proton target[3].We also studied the high lying isospin-1=2 nucleon resonances with the mass of around 2.0 GeV in theπN!η′N reaction and J=ψ!p ̄pη′decay[4].
文摘本文概述了基于粒子加速器的核物理研究主要的前沿方向和重要科学问题,分析了用于核物理研究的粒子加速器大科学装置发展现状和未来发展态势.国家"十二五"重大科技基础设施"强流重离子加速器装置"(High Intensity heavy-ion Accelerator Facility,HIAF)和"加速器驱动的嬗变研究装置"(China Initiative Accelerator Driven System,CiADS)正在广东惠州建设.以HIAF和CiADS为基础,本文提出建设用于核物理及其交叉前沿研究的大型带电粒子加速器集群装置——高亮度电子-离子研究装置(Bright Electron and Ion Research Facility,BEIF).依托BEIF装置拟开展的核物理前沿研究方向包括原子核结构、核天体物理、核子结构、夸克物质相结构,以及基础物理若干重要前沿与核物理的交叉,如高离化态原子物理、重离子驱动的高能量密度物理等.BEIF是由多台超导直线加速器、同步加速器、储存环、反应堆和各类大型实验探测器及实验终端等组成的大科学装置集群.BEIF计划分三期进行建设,建成后的装置将极大地推动我国的核物理和核科学技术研究能力的提升.
文摘核子(质子和中子的总称)大约占宇宙中可见物质总质量的99%.作为构成宇宙可见物质中的最主要成分,核子也是研究强相互作用,尤其是禁闭区非微扰QCD的重要实验室.电子离子对撞机(Electron Ion Collider, EIC),被称作当代卢瑟福散射实验,是人类认识物质世界深层次结构,特别是核子与原子核结构的理想工具.中国极化电子离子对撞机项目设想在已开建的HIAF高能离子束的基础上升级建造中国电子-离子对撞机(EIC in China,EicC),为我国核物理与粒子物理以及相关科学领域提供大型综合实验平台.本文综述了EicC在核子内不同味道海夸克的一维自旋味道结构、横动量依赖部分子分布函数、广义部分子分布函数测量的理论和模拟研究,展示了EicC在以上测量中可达到的预期精度,以及与现有测量精度的对比.另外,本文也综述了EicC在质子质量起源、重味强子谱、核介质效应及π介子的内部结构等重要物理问题中的潜在贡献,以及EicC探测器概念设计.EicC装置将有力地促进人们对核子自旋和质量的起源、夸克胶子禁闭机制等基本问题的理解.