The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and...The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.展开更多
Microfluidic technology has been successfully applied to determine the reaction kinetics relying on its great characteristics including narrow residence time distribution,fast mixing,high mass and heat transfer rates ...Microfluidic technology has been successfully applied to determine the reaction kinetics relying on its great characteristics including narrow residence time distribution,fast mixing,high mass and heat transfer rates and very low consumption of materials.In this review,the recent progresses about the reaction kinetics measured in microreactors are comprehensively organized,and the kinetic modeling thoughts,determination methods and essential kinetic regularities contained in these studies are summarized according to the reaction types involving nitration,oxidation,hydrogenation,photochemical reaction,polymerization and other reactions.Besides,the significant advances in the innovation of microplatform are also covered.The novel reactor configuration methods were established mainly to achieve rapid and efficient data collection and analysis.Finally,the advantages of microfluidic technology for the kinetic measurement are summarized,and a perspective for the future development is provided.展开更多
Microfluidic approaches for the determination of interfacial tension and viscosity of liquid-liquid systems still face some challenges.One of them is liquid-liquid systems with low interfacial and high viscosity,becau...Microfluidic approaches for the determination of interfacial tension and viscosity of liquid-liquid systems still face some challenges.One of them is liquid-liquid systems with low interfacial and high viscosity,because dripping flow in normal microdevices can’t be easily realized for the systems.In this work,we designed a capillary embedded step T-junction microdevice to develop a modified microfluidic approach to determine the interfacial tension of several systems,specially,for the systems with low interfacial tension and high viscosity.This method combines a classical T-junction geometry with a step to strengthen the shear force further to form monodispersed water/oil(w/o)or aqueous two-phase(ATP)droplet under dripping flow.For systems with low interfacial tension and high viscosity,the operating range for dripping flow is relative narrow whereas a wider dripping flow operating range can be realized in this step Tjunction microdevice when the capillary number of the continuous phase is in the range of 0.01 to 0.7.Additionally,the viscosity of the continuous phase was also measured in the same microdevice.Several different systems with an interfacial tension from 1.0 to 8.0 m N·m^(-1) and a viscosity from 0.9 to 10 m Pa·s were measured accurately.The experimental results are in good agreement with the data obtained from a commercial interfacial tensiometer and a spinning digital viscometer.This work could extend the application of microfluidic flows.展开更多
基金supported by the National Natural Science Foundation of China(22125802,22078010).
文摘The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.
基金support from National Natural Science Foundation of China(21991104).
文摘Microfluidic technology has been successfully applied to determine the reaction kinetics relying on its great characteristics including narrow residence time distribution,fast mixing,high mass and heat transfer rates and very low consumption of materials.In this review,the recent progresses about the reaction kinetics measured in microreactors are comprehensively organized,and the kinetic modeling thoughts,determination methods and essential kinetic regularities contained in these studies are summarized according to the reaction types involving nitration,oxidation,hydrogenation,photochemical reaction,polymerization and other reactions.Besides,the significant advances in the innovation of microplatform are also covered.The novel reactor configuration methods were established mainly to achieve rapid and efficient data collection and analysis.Finally,the advantages of microfluidic technology for the kinetic measurement are summarized,and a perspective for the future development is provided.
基金financially supported by the National Natural Science Foundation of China (21991104)
文摘Microfluidic approaches for the determination of interfacial tension and viscosity of liquid-liquid systems still face some challenges.One of them is liquid-liquid systems with low interfacial and high viscosity,because dripping flow in normal microdevices can’t be easily realized for the systems.In this work,we designed a capillary embedded step T-junction microdevice to develop a modified microfluidic approach to determine the interfacial tension of several systems,specially,for the systems with low interfacial tension and high viscosity.This method combines a classical T-junction geometry with a step to strengthen the shear force further to form monodispersed water/oil(w/o)or aqueous two-phase(ATP)droplet under dripping flow.For systems with low interfacial tension and high viscosity,the operating range for dripping flow is relative narrow whereas a wider dripping flow operating range can be realized in this step Tjunction microdevice when the capillary number of the continuous phase is in the range of 0.01 to 0.7.Additionally,the viscosity of the continuous phase was also measured in the same microdevice.Several different systems with an interfacial tension from 1.0 to 8.0 m N·m^(-1) and a viscosity from 0.9 to 10 m Pa·s were measured accurately.The experimental results are in good agreement with the data obtained from a commercial interfacial tensiometer and a spinning digital viscometer.This work could extend the application of microfluidic flows.